首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
由于马拉维钛铁矿资源中铁和钛矿物关系复杂,用常规的重选、磁选和电选方法难以直接分离,不能选出合格的钛精矿,仅能获得低品级的钛粗精矿。本研究用MLA(矿物定量自动检测系统)和SEM(扫描电镜)等测试手段对钛粗精矿进行了工艺矿物学研究,研究结果表明,该钛粗精矿中钛赤铁矿和赤铁矿合计含量为16.33%,钛铁矿含量为79.49%,由于钛与铁呈固溶分离或氧化蚀变形成了钛赤铁矿,导致钛粗精矿中钛、铁难以有效分离,因此,采用焙烧工艺将赤铁矿还原成磁铁矿,利用磁铁矿与钛铁矿的磁性差异特征进行磁选分离,有效回收利用钛粗精矿中的铁和钛。钛粗精矿经过还原焙烧—磁选工艺处理后获得铁精矿和钛精矿,铁精矿中Fe含量为56.71%、回收率13.50%,钛精矿中的TiO2含量为49.10%、产率为65.57%、回收率为77.57%。该试验使钛粗精矿中钛铁矿与赤铁矿得到高效分离,为马拉维钛铁矿资源高效综合回收利用提供了技术途径。  相似文献   

2.
当前,重选和湿式磁选是选别含钛铁矿砂矿的主要方法。按菱铁矿和钛铁矿的比重(4.72及3.9克/立方厘米)及磁化系数而言相差不大。因此,当用螺旋选矿机选别时两种矿物均进入重选精矿,而当湿式磁选时则成为磁性产品。众所周知,当菱铁矿加热到350~450℃时分解出二氧化碳气体同时所形成的氧化铁比菱铁矿的磁化系数大大增高。从处理铁矿石的实践中知道,为了提高弱磁性矿物如赤铁矿、褐铁矿、菱铁矿及黄铁矿的磁性采用磁化焙烧。为了最终精选钛铁矿粗精矿,即为了分离钛铁矿  相似文献   

3.
喻连香  汤优优  刘军  陈雄 《金属矿山》2020,50(5):185-190
马拉维海滨砂钛铁粗精矿中含钛矿物占有率大于95%,TiO2含量仅为42.71%,部分钛铁矿物赤铁矿化蚀变明显。为确定钛铁粗精矿选冶提质工艺,以该地区海滨砂经重选—磁选工艺处理后获得的钛铁粗精 矿为研究对象,通过详细的工艺矿物学研究及条件试验,优化出选冶流程中适宜的工艺参数。钛铁粗精矿焙烧试验最佳的还原条件为:还原焙烧温度875 ℃、还原时间12.5 min,还原剂用量5%。焙砂经1次弱磁粗选、 中磁扫选,最终可获得TiO2含量49.05%、TiO2回收率77.16%的钛铁矿精矿以及Fe含量49.73%、Fe回收率34.61%的铁精矿,TiO2含量从42.71%提高到49.05%,精矿品质得到大幅度提升。该选冶联合工艺流程简单,无药 剂污染,可为该类难分离钛铁粗精矿资源的有效利用提供技术途径。  相似文献   

4.
四川攀西某难选钛铁矿重选精矿矿物种类多,金属矿物主要有钛铁矿、钛磁铁矿等,脉石矿物主要为钛辉石、绿泥石等。钛铁矿与脉石矿物嵌布粒度偏细,脉石矿物多含铁元素且易泥化。为实现该重选精矿的高效分选,进行了选矿试验研究。结果表明,通过阶段磨矿-弱磁除铁-浮选富集钛-强磁提质的工艺流程能够获得良好的分选指标。矿样磨细至-0.074 mm占55%,在弱磁选磁场强度为96 kA/m条件下弱磁除铁,弱磁尾矿以硫酸为pH调整剂、羧甲基纤维素钠(CMC)为抑制剂、油酸钠为捕收剂浮选钛铁矿,将浮选粗精矿筛分(-0.038 mm)后,筛上磨细至-0.074 mm占80%,与筛下产品合并脱泥后去除-0.014 mm粒级细泥,沉砂经4次精选,闭路浮选可获得钛精矿TiO2品位42.86%、回收率59.79%的浮选指标;对浮选精矿创新性地进行强磁提质分选工艺,最终获得钛精矿TiO2品位46.77%、回收率54.38%的选别指标。实现了钛资源的有效回收,可以为选厂建设提供技术支持。  相似文献   

5.
某地钛中矿物组成复杂,且粒度分布粗细不均,少量已赤铁矿化、褐铁矿化,并且部分钛磁铁矿磁性、可浮性与钛铁矿相似,属较难分选矿物。针对该矿石性质进行了多种选矿工艺试验研究,确定了弱磁脱除部分磁铁矿、强磁预抛尾、重选与浮选联合处理磁选粗精矿的磁选—重选—浮选联合选矿流程。浮选是回收细粒级钛铁矿的有效方法。增加浮选流程可提高钛精矿中Ti O_2回收率13%,而Ti O_2品位基本不变。在获得最佳浮选条件的基础上,进行了全流程闭路试验,获得了Ti O_2品位47.11%、回收率69.88%的钛精矿,为当地钛矿物的有效回收提供了技术依据。  相似文献   

6.
朝鲜某地区钛铁矿矿砂主要元素为铁、钛.铁矿物主要为钛铁矿,少量为磁铁矿.钛铁矿单体仅占43.70%,部分钛铁矿包裹脉石矿物,且包裹体细小.试验对溜槽重选,溜槽重选粗精矿磨矿-摇床重选、原矿分级重选等工艺流程进行了试验研究,最后确定采用溜槽重选-摇床再选-摇床精矿弱磁选和摇床中矿再磨-摇床-精矿弱磁选的工艺流程,试验获得铁精矿铁品位61.30%、回收率5.11%,钛精矿TiO2品位46.81%、TiO2回收率71.62%.  相似文献   

7.
某硅线石矿伴生石榴石,两矿物粒度细。细磨条件下,经湿式弱磁选-湿式强磁选-重选-干磁选联合流程选别,可获得品位93%、回收率85%的石榴石精精矿,但难以浮选出硅线石精矿;粗磨条件下,对非磁性产品采用重选-化学处理流程选别,可获得Al2O3含量61.09%、回收率61.06%的硅线石精矿。  相似文献   

8.
吴熙群  鞠义武 《矿冶》1997,6(4):25-29,19
究了含有独居石、钛铁矿、锆英石、金红石和锡石的潜水层以下海滨砂矿中毛矿精选新工艺,毛矿重选富集后湿式强磁选。磁性产品在自然pH值条件下,添加水玻璃、MS-5浮选独居石,浮选精矿经磁选后得品位高于65%的独居石精矿;独居石浮选尾矿通过磁选得到钛铁矿精矿。非磁性产品用摇床丢尾并将有用矿物分成3组粗精矿和1组中矿,锆英石粗精矿和中矿采用分流流程、捕收剂B3和抑制剂RW,在弱酸性条件下浮选,浮选精矿电选除钛后得锆精矿特级品和一级品;锆英石浮选尾矿经电选和金红石粗精矿采用浮选-电选流程均可获得含TiO2高于90%的金红石精矿。锡石粗精矿用电选精选得锡石精矿。  相似文献   

9.
某地钛铁矿的嵌布粒度不均匀、脉石矿物角闪石因含钛铁矿或磁铁矿包裹体而磁性增强,钛的理论回收率仅65%左右.针对该矿的矿石性质,采用阶段磨矿阶段选别的工艺回收钛铁矿,即将原矿磨至53.37%-0.074 mm后,采用一粗一精强磁选获得钛粗精矿,粗精矿再磨至80%-0.074 mm后经二次强磁精选,一次中磁选脱铁.在原矿TiO2品位7.93%时,获得钛精矿TiO2品位48.10%、回收率45.82%的指标.  相似文献   

10.
通过对国外某海滨砂矿难选锆中矿进行工艺矿物学和选矿分离试验研究,采用湿式磁选—重选—干式磁选—电选联合选矿工艺流程,最终得到富钛钛铁矿含TiO_252.31%,金红石含TiO_292.43%,锆英石含Zr(Hf)O_265.10%,独居石精矿含REO61.77%产品,为同类型海滨砂矿综合回收利用提供了技术依据.  相似文献   

11.
某复杂稀有金属伴生矿选矿试验研究   总被引:1,自引:0,他引:1  
内蒙古某稀有金属伴生矿REO含量0.28%,Nb2O5含量0.24%,铁品位5.72%,稀土和铌矿物嵌布粒度微细,稀土矿物主要有氟碳铈矿和独居石,铌矿物主要为钽铌锰矿和钇复稀金矿,铁钛矿物为钛磁赤铁矿、锰钛铁矿,脉石矿物主要有石英和长石。分别研究了重选、磁选及磁选—重选联合流程对原矿稀土、铌、铁的预富集效果。结果表明,重选对原矿中铁、稀土和铌的预富集效果不理想,高梯度磁选和磁选—重选联合工艺可获得较好的预富集效果。在磨矿细度-74μm含量占82.5%,磁场强度1.0 T的条件下,高梯度磁选试验可获得TFe 32.59%、REO含量1.57%、Nb2O5含量1.34%的粗精矿,三者回收率分别为85.57%、85.20%和86.94%,粗精矿可采用冶金工艺分离提取稀土、铌、铁。  相似文献   

12.
针对辽西风化壳型钒钛磁铁矿有用矿物难以回收利用的问题,进行了详细的工艺矿物学研究。矿石中金属矿物主要为磁铁矿、(钛)磁铁矿、钒磁铁矿、钛铁矿,非金属矿主要有长石、角闪石和石英。其中钛、钒主要以类质同象的形式赋存在磁铁矿中,且矿石中磁铁矿、钛铁矿及脉石矿物嵌布关系复杂,解离困难。分别采用直接磨矿-弱磁选预富集、粗粒干式预抛尾-磨矿-弱磁选预富集、粗粒湿式预抛尾-磨矿-弱磁选预富集工艺进行了预富集工艺对比试验。结果表明,粗粒湿式预抛尾-磨矿-弱磁选无论在功耗还是回收率指标方面均优于其余2种工艺。采用该工艺在磨矿细度为-0.074 mm占70%条件下,获得了V2O5含量为1.561%、回收率为60.96%,TFe品位为40.43%、回收率为24.83%的预富集精矿,可以满足后续直接酸浸提钒的工艺要求。对粗粒湿式预抛尾-磨矿-弱磁选工艺获得的精矿、尾矿进行分析检测表明,钒、钛以类质同象的形式替换磁铁矿中的铁,使预富集精矿铁品位较低,预富集精矿中磁铁矿、钛磁铁矿、脉石矿物嵌布关系复杂紧密,无法通过机械磨矿使其解离。因此,即使继续增加磨矿细度,预富集精矿全铁品位也仅能保持在40%左右,不能再继续提高。  相似文献   

13.
张琦  唐学飞  刘杰  秦永红 《金属矿山》2019,48(2):183-187
随着辽宁某选厂重选精矿的铁品位变低,其已不能作为精矿产品汇入总精矿,为给该选厂工艺流程改善提供指导,从化学组成、元素赋存状态、矿物组成、矿物间的嵌布关系及连生关系等方面,对重选精矿进行了工艺矿物学研究。结果表明:重选精矿铁品位为60.62%,铁主要赋存于赤铁矿和磁铁矿中,主要的脉石矿物为石英;铁主要分布在-0.074 mm粒级,铁在该粒级分布率高达84.47%,TFe品位64.52%,只有通过细磨才能实现铁矿物与脉石的较好解离;在有用矿物与脉石的连生体中,以赤铁矿与脉石结合形成的连生体为主,其次为磁铁矿、赤铁矿与脉石矿物结合形成的连生体;随着粒度变细,试样中赤铁矿和磁铁矿的单体解离度快速提高,尤其在-0.045 mm粒级产品中,绝大多数赤铁矿和磁铁矿颗粒完成了单体解离;赤铁矿和磁铁矿的浸染粒度以中粒、细粒嵌布为主,中粒级试样中脉石含量仍较高,细粒赤铁矿和磁铁矿含量较高,铁主要赋存在-0.074 mm粒级中。建议采用细筛分级-载体浮选工艺进行试验研究,即重选精矿筛上返回再磨,筛下产品进入浮选,背负细粒磁选精矿完成回收。  相似文献   

14.
国外某海滨砂矿中TiO2含量和ZrO2含量分别达到了7.55%和0.74%,其中钛主要以钛铁矿、金红石等工业可利用矿物形式存在,锆主要以锆英石形式存在,嵌布粒度范围主要集中在0.04-0.16mm,属于物理选矿适宜回收的粒度范围,是典型的锆钛共生砂矿。本论文以国外某滨海砂矿为研究对象,进行了工艺矿物学和选矿小型试验研究,采用“锆钛矿物重选预富集-钛铁矿与非磁性锆钛矿物磁选分离-锆钛矿物重选再富集-金红石与锆英石干式磁电选分离”的全工艺流程,分别获得了钛品位大于52%的钛铁矿精矿、钛品位大于77%含铁金红石精矿、钛品位大于75%金红石精矿以及锆品位大于63%的锆英石精矿。钛锆回收率分别达到了81%和74%,实现了该矿床中钛锆资源的高效利用,可为同类矿山的开发利用提供借鉴。  相似文献   

15.
某微细粒嵌布复杂铁矿的选矿工艺流程研究   总被引:2,自引:0,他引:2  
矿石中铁矿物主要以不规则状产出,粒度以微、细粒为主,嵌布关系复杂,且矿物种类繁多,主要为赤铁矿、假象赤铁矿,其次为磁铁矿、褐铁矿、针铁矿及少量菱铁矿,尚有微量磁赤铁矿、自然铁、磷铁矿等;脉石矿物主要为石英,其它是辉石、绿泥石、云母、长石、黏土矿物等;本研究采用合理多段、适当细磨工艺,强化微、细粒赤铁矿及假象赤铁矿的回收。试验推荐重选—磁选—反浮选联合流程,获得品位为67.79%、回收率为83.23%的铁精矿。  相似文献   

16.
马拉维湖滨型钛铁砂矿选冶分离试验研究   总被引:1,自引:0,他引:1  
对马拉维湖滨砂矿进行了工艺矿物学和选冶分离试验研究.结果表明,通过磁选、摇床重选、电选及还原焙烧等选冶联合工艺,获得了TiO2品位49.85%、全流程回收率61.03%的合格钛精矿和ZrO2品位大于63%、全流程回收率52.51%的锆精矿,同时综合回收了TFe品位分别为65.80%和48.74%的2种铁精矿.  相似文献   

17.
攀枝花某铁矿原矿石中有用矿物为磁铁矿,其磁性铁分布率为79.53%,有少量的赤铁矿、褐铁矿,钒钛含量极低无法进行物理选别,脉石矿物主要为云母、长石等硅酸盐矿物,矿石中的有用矿物因嵌布粒度细导致极难回收利用。为了高效开发利用该类矿石资源,经磨矿、磁选条件实验及重选探索实验,确定了单作业较佳工艺参数,经工艺流程实验,确定采用阶段磨矿、阶段选别、单一磁选工艺处理该矿石。工艺流程实验结果表明,在原矿石中铁品位36.78%,经三次磨矿、五次磁选,在-43 μm含量98%的最终磨矿粒度条件下,最终获得铁精矿品位为65.50%,产率41.77%,金属回收率为74.39%的铁精矿,为有效利用细粒嵌布类型攀枝花铁矿提供了新的参考工艺。  相似文献   

18.
采用扫描电子显微镜、电子探针、X射线衍射分析等技术手段,基本查明了甘肃某含钪钛铁矿的工艺矿物学性质。结果表明,矿石中铁、钛矿物总量较低,为低硫低磷含钪低品位钛铁矿矿石;主要脉石矿物为角闪石、长石,其次为辉石,伴生元素钪主要分布在角闪石中;矿石中磁铁矿和钛铁矿主要毗邻嵌布在脉石粒间或呈不规则粒状嵌布在脉石中,嵌布粒度相对较粗,磁性相对较强;在主要脉石矿物中,角闪石伴生元素钪,粒度较粗,为电磁性硅酸盐矿物,长石呈它形粒状嵌布在暗色硅酸盐矿物粒间或被其包裹,无磁性,不含钪。根据矿石的工艺矿物学特性,该矿石宜采用粗粒抛尾进行预处理,然后采用磁选、重选等高效、低成本的工艺进行预富集,以减少后续作业的处理量,降低选矿成本。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号