首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The two-step sequentially deposition strategy has been widely used to produce high-performance FAPbI3-based solar cells. However, due to the rapid reaction between PbI2 and FAI, a dense perovskite film forms on top of the PbI2 layer immediately and blocks the FAI diffusion into the bottom of the PbI2 film for a complete reaction, which results in a low-efficiency and limited reproducibility of perovskite solar cells (PSCs). Here, high-quality α-FAPbI3 perovskite films by crystal growth regulation with 4-fluorobenzamide additives is fabricated. The additives can interact with FAI to suppress the fast reaction between the FAI and PbI2 and effectively passivate the under-coordinated Pb2+ or I- defects. As a result, α-FAPbI3 perovskite films with low trap density and large grain size are prepared. The modified PSCs present a high-power conversion efficiency of 24.08%, maintaining 90% of their initial efficiency after 1400 h in high humidity. This study provides an efficient strategy of synergistic crystallization and passivation to form high-quality α-FAPbI3 films for high-performance PSCs.  相似文献   

2.
There is an ongoing surge of interest in the use of formamidinium (FA) lead iodide perovskites in photovoltaics due to their exceptional optoelectronic properties. However, thermodynamic instability of the desired cubic perovskite (α-FAPbI3) phase at ambient conditions leads to the formation of a yellow non-perovskite (δ-FAPbI3) phase that compromises its utility. A stable α-FAPbI3 perovskite phase is achieved by employing benzylammonium iodide (BzI) and the microscopic structure is elucidated by using solid-state NMR spectroscopy and X-ray scattering measurements. Perovskite solar cells based on the FAPbI3(BzI)0.25 composition achieve power conversion efficiencies exceeding 20%, which is accompanied by enhanced shelf-life and operational stability, maintaining 80% of the performance after one year at ambient conditions.  相似文献   

3.
Hybrid halide perovskite has established its credibility as high performance thin film photovoltaic technology. Perovskite based on formamidinium cation is at the core composition to top performances and stability. Herein, a depth study based on temperature-controlled in situ X-ray diffraction focusing on the photo-active formamidinium lead iodide (α-FAPbI3) is reported. In particular, the thermal stability of the latter and the degradation pathways under different experimental conditions are clarified. Based on this in situ technique, the lattice thermal expansion coefficient is reported that provides relevant information on possible mechanical stress created upon temperature cycling or damp heat test. The results support that α-FAPbI3 degradation is substantially accelerated when temperature is combined to illumination and when it is interfaced with the extraction layers. In addition, by contrast to in darkness for which α-FAPbI3 degrades directly into PbI2, the existence of a temperature gap under illumination involving an intermediate step with a non-crystalline phase resulting from the perovskite degradation and contributing to the formation of PbI2 by-product is revealed.  相似文献   

4.
The substrates of conventional flexible perovskite solar cells (FPSCs) are thermoplastic polymer material polyethylene naphthalate (PEN), which will deform during high temperature annealing process. In addition, lead iodide (PbI2) permanently formed and the substrate undergoes reversible deformation from 20 °C to 200 °C and back to 20 °C. Therefore, to balance the substrate supporting capacity and the crystalline quality of narrow band gap α-phase formamidinium lead iodide (α-FAPbI3), an annealing process of 120 °C for 30 minutes is determined. Additionally, there will also be a large number of gaps and lattice strain at the perovskite grain boundaries during the annealing process as the FAPbI3 phase transition is accompanied by much lattice shrinkage. As a result, 1,6-hexanediammonium diiodide (HADI) is chosen to passivate the defects and release the stress of perovskite film. Therefore, a recorded 1.4% extended stretch rate of the flexible film is attained. Finally, the champion PCE of 21.14% under AM 1.5G and 31.52% under 1062 lux is achieved after HADI treatment, accompanied by a better long-term and mechanical stability. This study provides annealing process optimization and stress relief strategies for the further development of narrow band gap FPSCs.  相似文献   

5.
Recently, a new seeding growth approach for perovskite thin films is reported to significantly enhance the device performance of perovskite solar cells. This work unveils the intermediate structures and the corresponding growth kinetics during conversion to perovskite crystal thin films assisted by seeding PbS nanocrystals (NCs), using time‐resolved grazing‐incidence X‐ray scattering. Through analyses of time‐resolved crystal formation kinetics obtained from synchrotron X‐rays with a fast subsecond probing time resolution, an important “catalytic” role of the seed‐like PbS NCs is clearly elucidated. The perovskite precursor‐capped PbS NCs are found to not only accelerate the nucleation of a highly oriented intermediate phase, but also catalyze the conversion of the intermediate phase into perovskite crystals with a reduced activation energy Ea = 47 (±5) kJ mol?1, compared to 145 (±38) kJ mol?1 for the pristine perovskite thin film. The reduced Ea is attributed to a designated crystal lattice alignment of the perovskite nanocrystals with perovskite cubic crystals; the pivotal heterointerface alignment of the perovskite crystals coordinated by the Pb NCs leads to an improved film surface morphology with less pinholes and enhanced crystal texture and thermal stability. These together contribute to the significantly improved photovoltaic performance of the corresponding devices.  相似文献   

6.
Formamidinium lead triiodide (FAPbI3) with an ideal bandgap and good thermal stability has received wide attention and achieved a record efficiency of 26% in n–i–p (regular) perovskite solar cells (PSCs). However, imperfect FAPbI3 formation on the typical hole transport layer (HTL), high interfacial trap-state density, and unfavorable energy alignment between the HTL and FAPbI3 result in the inferior photovoltaic performance of p–i–n (inverted) PSCs with FAPbI3 absorber. Herein, the α-phase FAPbI3 is stabilized by constructing a buffer interface region between the NiOx HTL and FAPbI3, which not only diminishes NiOx/FAPbI3 interfacial reactions and defects but also facilitates carrier transport. Upon the construction of a buffer interface region, FAPbI3 inverted PSC exhibits a high-power conversion efficiency of 23.56% (certified 22.58%) and excellent stability, retaining 90.7% of its initial efficiency after heating at 80 °C for 1000 h and 84.6% of the initial efficiency after operating at the maximum power point under continuous illumination for 1100 h. Besides, as a light-emitting diode device, the FAPbI3 inverted PSC can be directly lit with an external quantum efficiency of 1.36%. This study provides a unique and efficient strategy to advance the application of α-phase FAPbI3 in inverted PSCs.  相似文献   

7.
Two-terminal, mechanically-stacked perovskite/silicon tandem solar cells offer a feasible way to achieve power conversion efficiencies (PCEs) of over 35%, provided that the state-of-the-art industrial silicon solar cells and perovskite solar cells (PSCs) are fully compatible with one another. Herein, two-terminal, mechanically-stacked perovskite/silicon tandem solar cells are developed by mechanically interconnecting semitransparent PSCs and TOPCon solar cells with a MXene interlayer. The semitransparent PSCs are made from wide-bandgap perovskite Cs0.15FA0.65MA0.20Pb(I0.80Br0.20)3 films. Furthermore, the co-additives KPF6 and CH3NH3Cl(MACl) are employed to reduce grain boundaries and intragranular defects in the perovskite, boosting the PCE of the semitransparent PSCs to a record-high value of 20.96% under reverse scan (RS) through a reduction in non-radiative recombination probability. These optimized semitransparent PSCs are then employed in MXene-interconnected two-terminal, mechanically-stacked tandem solar cells. The enhanced interfacial carrier transportation, with minimal influence on light transmission, imparted by the MXene flakes allows the tandem solar cells to achieve a stabilized PCE of 29.65%. The tandem cells also exhibit acceptable operational stability and are able to retain ≈93% and 92% of their initial PCEs after 120 min of continuous illumination or storage in ambient air for 1000 h, respectively.  相似文献   

8.
The buried interface has important effect on carrier extraction and nonradiative recombination of perovksite solar cells (PSCs). Herein, to inactivate the buried interfacial defects of perovskite and boost the crystallization quality of perovskite film, 3-amino-1-adamantanol (AAD) serves as a pre-buried interface modifier on nickel oxide (NiOx) surface to regulate the nucleation and crystallization process of perovskite precursor. The amino and hydroxyl groups in AAD molecule can synchronously coordinate with nickel ion (Ni3+) in NiOx and lead ion in perovskite, respectively. The dual action favors the ordered arrangement of AAD molecules between NiOx and perovskite, which not only enhances hole extraction in hole transport layer, but also provides active sites for homogeneous nucleation. Furthermore, AAD modifier blocks the unfavorable reaction between Ni3+ and perovskite, and effectively passivates the buried interfacial defects. The optimal inverted PSCs achieve a champion power conversion efficiency of 22.21% with negligible hysteresis, favorable thermal, optical, and long-term stability. Thus, this strategy of modulating perovskite nucleation and crystallization by pre-buried modifier is feasible for achieving efficient and stable inverted perovskite solar cells.  相似文献   

9.
Surface passivation via 2D perovskite is critical for perovskite solar cells (PSCs) to achieve remarkable performances, in which the applied spacer cations play an important role on structural templating. However, the random orientation of 2D perovskite always hinder the carrier transport. Herein, multiple nitrogen sites containing organic spacer molecule (1H-Pyrazole-1-carboxamidine hydrochloride, PAH) is introduced to form 2D passivation layer on the surface of formamidinium based (FAPbI3) perovskite. Deriving from the interactions between PAH and PbI2, the defects of FAPbI3 perovskite are effectively passivated. Interestingly, due to the multiple-site interactions, the 2D nanosheets are found to grow perpendicularly to the substrate for promotion of charge transfer. Therefore, an impressive power conversion efficiency of 24.6% and outstanding long-term stability are achieved for the 2D/3D perovskite devices. The findings further provide a perspective in structure design of novel organic halide salts for the fabrication of efficient and stable PSCs.  相似文献   

10.
Inorganic perovskite solar cells (IPSCs) have attained attention due to their excellent thermal and phase stability. In this work, we demonstrate a novel approach for fabricating IPSCs, using the strategies of interface passivation and anti-solvent before spin-coating perovskite. Poly(methyl methacrylate) (PMMA) and chlorobenzene (CB) are used as passivator and anti-solvent, respectively. The CB improves the perovskite crystal morphology. Meanwhile, PMMA passivates the defects between poly(3, 4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) and perovskite layer, thus increasing the short-circuit current. Excitingly, we find that PMMA benefits the grain boundaries (GBs) of perovskite, which makes it more humidity-resistant, increasing the stability of perovskite film. Especially, PMMA mitigates interfacial charge losses, and the devices based on CsPbI3-xBrx passivated by PMMA exhibit the power conversion efficiency (PCE) much higher than those based on pure CsPbI3-xBrx.  相似文献   

11.
Our cost-effective approach for hybridizing methylammonium lead iodide and PbS nanoparticles at low temperature (≤100 °C) for photovoltaic devices is introduced. As employed into a perovskite based solar cell platform, effects of PbS on the device performance were investigated. Through experimental observations under simulated air-mass 1.5G illumination (irradiation intensity of 100 mWcm−2), the efficiency of a perovskite:PbS device is 11% higher than that of a pristine perovskite solar cell under the same fabrication conditions as a result of the broadened absorption range in the infrared region. The highest photovoltaic performance was observed at a PbS concentration of 2% with an open-circuit voltage, short-circuit current density, fill factor, and power-conversion efficiency of 0.557 V, 22.841 mA cm−2, 0.55, and 6.99%, respectively. Furthermore, PbS NPs could induce hydrophobic modification of the perovskite surface, leading to an improvement of the device stability in the air. Finally, the low-temperature and cost-effective fabrication process of the hybrid solar cells is a good premise for developing flexible/stretchable cells as well as future optoelectronic devices.  相似文献   

12.
Molecular passivation on perovskite surface is an effective strategy to inhibit surface defect-assisted recombination and reduce nonradiative recombination loss in perovskite solar cells (PSCs). However, the majority of passivating molecules bind to perovskite surface through weak interactions, resulting in weak passivation effects and susceptible to interference from various factors. Especially in carbon-based perovskite solar cells (C-PSCs), the molecular passivation effect is more susceptible to disturbance in subsequent harsh preparation of carbon electrodes via blade-coating route. Herein, bidentate ligand 2,2′-Bipyridine (2Bipy) is explored to passivate surface defects of CsPbI2.6Br0.4 perovskite films. The results indicate that compared with monodentate pyridine (Py), bidentate 2Bipy shows a stronger chelation with uncoordinated Pb(II) defects and exhibits a greater passivation effect on perovskite surface. As a result, 2Bipy-modified perovskite films display a significantly boosted photoluminescence lifetime, accompanied by excellent anchoring stability and anti-dissociation of passivating molecules. Meanwhile, the moisture resistance of the 2Bipy-modified perovskite films is also significantly enhanced. Consequently, the efficiency of C-PSCs is improved to 16.57% (Jsc = 17.16 mA cm−2, Voc = 1.198 V, FF = 80.63%). As far as it is known, this value represents a new record efficiency for hole transport material-free inorganic C-PSCs.  相似文献   

13.
Semi-transparent and self-encapsulated perovskite solar cells could be fabricated by simply laminating the front sub-cell (ITO/poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS)/CH3NH3PbI3) and back sub-cell (FTO/compact-TiO2/mesoporous-TiO2/CH3NH3PbI3), without vacuum-evaporating metal electrode. The addition of chlorobenzene (CB) between two perovskite layers accelerated perovskite crystals interfusion and close interfacial contact from two separated sub-cells, which contributed to perovskite film with high crystallinity and light absorption in laminated cells. The self-encapsulated perovskite solar cell (device area of 0.39 cm2) with CB treatment not only showed power conversion efficiency of 6.9%, but also existed excellent stability even if soaking in water for 24 h. This novel approach to fabricate semi-transparent, solution-processible, cost-effective and high-stable perovskite solar cells may provide a reliable royal road for realizing commercial application in exterior building window, with the combination of large-area roll-to-roll printing technique, etc.  相似文献   

14.
Excess lead(II) iodide (PbI2) has controversial roles in affecting the efficiency of perovskite solar cells (PSCs). Since the photoinstability of PbI2 is now known to largely accelerate perovskite degradation, suppressing and/or eliminating excess PbI2 is key to improving the stability of PSCs. Herein, process-dependent PbI2 formation on the surfaces of formamidinium lead triiodide (FAPbI3) films is examined. Due to the faster evaporation rate of organic substances, crystalline PbI2 as an inclusion is found within the triple junction grain boundaries. With this hypothesis, two strategies are suggested: control of the 1) vapor pressure and 2) stoichiometry of precursor solutions to induce sufficient reaction of FAPbI3. Although both strategies successfully eliminate the PbI2 as inclusions, due to the slower evaporation rate, vapor pressure control films also exhibit a larger grain size (≈1.18 µm) with a good film quality to attain the highest power conversion efficiency (PCE) of 24.5%. Furthermore, the phase stability of α-FAPbI3 is improved due to the elimination of the degradation sites induced by the photoinstability of PbI2. The findings explore the formation process of unwanted PbI2 (≈2.8%) and provide a simple method to effectively suppress its formation. This may further boost the PCE and stability, especially for FA-based perovskites.  相似文献   

15.
High density of defects at interface severely affects the performance of perovskite solar cells (PSCs). Herein, cobalt (II) hexafluoro-2,4-pentanedionat (CoFAc), a hinge-type fluorine-rich complex, is introduced onto the surface of formamidinium cesium lead iodide (FACsPbI3) film to address the issues of perovskite/Spiro-OMeTAD interface. The existence of CoFAc passivates both organic cation and halide anion vacancies by establishing powerful hydrogen bonds with HC(NH2)2+ (FA+) and strong ionic bonds with Pb2+ in perovskite films. In addition, CoFAc serves as a connecting link to enhance interfacial hole-transport kinetics via interacting with Spiro-OMeTAD. Consequently, FACsPbI3 PSCs with CoFAc modification display a champion power conversion efficiency (PCE) of 24.64% with a charming open-circuit voltage (VOC) of 1.191 V, which is the record VOC among all the reported organic-inorganic hybrid PSCs with TiO2 as electron transport layer. Furthermore, CoFAc-modified devices exhibit an outstanding long-term stability, which can maintain 95% of their initial PCEs after exposure to ambient atmosphere for 1500 h without any encapsulation.  相似文献   

16.
Recently, organic–inorganic metal halide perovskite solar cells (PSCs) have achieved rapid improvement, however, the efficiencies are still behind the Shockley–Queisser theory mainly due to their high energy loss (ELOSS) in open-circuit voltage (VOC). Due to the polycrystalline nature of the solution-prepared perovskite films, defects at the grain boundaries as the non-radiative recombination centers greatly affect the VOC and limit the device efficiency. Herein, poly(vinylidene fluoride) (PVDF) is introduced as polymer-templates in the perovskite film, where the fluorine atoms in the PVDF network can form strong hydrogen-bonds with organic cations and coordinate bonds with Pb2+. The strong interaction between PVDF and perovksite enables slow crystal growth and efficient defect passivation, which effectively reduce non-radiation recombination and minimize ELOSS of VOC. PVDF-based PSCs achieve a champion efficiency of 24.21% with a excellent voltage of 1.22 V, which is one of the highest VOC values reported for FAMAPb(I/Br)3-based PSCs. Furthermore, the strong hydrophobic fluorine atoms in PVDF endow the device with excellent humidity stability, the unencapsulated solar cell maintain the initial efficiency of >90% for 2500 h under air ambient of ≈50% humid and a consistently high VOC of 1.20 V.  相似文献   

17.
Planar n–i–p carbon perovskite solar cells (PSCs) with a hole transport layer that can be fabricated at low temperatures at low-cost exhibit great potential for large-scale manufacturing. Moreover, 2D perovskites have attracted considerable attention owing to their higher stability. In this work, scalable and highly efficient fully printed large-area carbon electrode-based 2D perovskite modules are reported through the insertion of a thin naphthaleneimide derivative (CATNI)-based interfacial layer between tin (IV) oxide and the perovskite layer. The results show that this facilitates the formation of the interfacial contact, suppresses energy losses, and substantially improves the performance parameters of the PSCs, especially their VOC value. A significantly enhanced VOC of 1.13 V is achieved resulting in the device PCE value reaching over 18%, which is one of the highest reported for fully printed PSCs so far. It is found that with the deployment of this CATNI-based interfacial layer, a more efficient carrier extraction is achieved. This ultimately contributed to enhanced spectral response as well as improved VOC for these carbon electrodes based on fully printed devices. Finally, the carbon-perovskite solar modules (carbon-PSMs) are fabricated on ITO glass substrates with dimensions of 5.0 × 5.0 cm. These prepared modules exhibited outstanding photovoltaic performance with the highest PCE value of over 14.6%.  相似文献   

18.
A key issue for perovskite solar cells is the stability of perovskite materials due to moisture effects under ambient conditions, although their efficiency is improved constantly. Herein, an improved CH3NH3PbI3?xClx perovskite quality is demonstrated with good crystallization and stability by using water as an additive during crystal perovskite growth. Incorporating suitable water additives in N,N‐dimethylformamide (DMF) leads to controllable growth of perovskites due to the lower boiling point and the higher vapor pressure of water compared with DMF. In addition, CH3NH3PbI3?xClx · nH2O hydrated perovskites, which can be resistant to the corrosion by water molecules to some extent, are assumed to be generated during the annealing process. Accordingly, water additive based perovskite solar cells present a high power conversion efficiency of 16.06% and improved cell stability under ambient conditions compared with the references. The findings in this work provide a route to control the growth of crystal perovskites and a clue to improve the stability of organic–inorganic halide perovskites.  相似文献   

19.
Power conversion efficiency (PCE) and stability are two important properties of perovskite solar cells (PSCs). Particularly, defects in the perovskite films could cause the generation of trap states, thereby increasing the nonradiative recombination. To address this issue, suitable dopants can be incorporated to react with non-bonded atoms or surface dangling bonds to passivate the defects. Herein, we introduced TiI4 into CH3NH3PbI3 (MAPbI3) film and obtained a dense and uniform morphology with large crystal grains and low defect density. The champion cell based on 0.5% TiI4-doped MAPbI3 achieved a PCE as high as 20.55%, which is superior to those based on pristine MAPbI3 (17.64%). Moreover, the optimal solar cell showed remarkable stability without encapsulation. It retained 88.03% of its initial PCE after 300 h of storage in ambient. This work demonstrates TiI4 as a new and effective passivator for MAPbI3 film.  相似文献   

20.
Mixed 2D/3D perovskite solar cells (PSCs) show promising performances in efficiency and long-term stability. The functional groups terminated on a large organic molecule used to construct 2D capping layer play a key role in the chemical interaction mechanism and thus influence the device performance. In this study, 4-(trifluoromethyl) benzamidine hydrochloride (TFPhFACl) is adopted to construct 2D capping layer atop 3D perovskite. It is found that there are two mechanisms synergistically contributing to the increase of efficiency: 1) The TFPhFA+ cations form a dipole layer promoting the interfacial charge transport. 2) The suppressed nonradiative recombination of perovskite through the coordination of TFPhFA+ cations with Pb–I octahedron, as well as the recrystallization of 3D perovskite induced by Cl- ions. As a result, the PSC delivers an efficiency of 24.0% with improved open-circuit voltage (VOC) of 1.16 V, short-circuit current density (JSC) of 25.42 mA cm-2, and fill factor of 81.26%. The device shows no decrease in efficiency after 1500 h stored in the air indicating the good stability. The utilization of TFPhFACl not only provides a facile way to optimize the interfacial problems, but also gives a new perspective for rational design of large spacer molecule for constructing efficient 2D/3D PSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号