首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Organolead halide hybrid perovskite solar cells (PSCs) have become a shining star in the renewable devices field due to the sharp growth of power conversion efficiency; however, interfacial recombination and carrier-extraction losses at heterointerfaces between the perovskite active layer and the carrier transport layers remain the two main obstacles to further improve the power conversion efficiency. Here, novel field-effect passivation has been successfully induced to effectively suppress the interfacial recombination and improve interfacial charge transfer by incorporating interfacial polarization via inserting a high work function interlayer between perovskite and holes transport layer. The charge dynamics within the device and the mechanism of the field-effect passivation are elucidated in detail. The unique interfacial dipoles reinforce the built-in field and prevent the photogenerated charges from recombining, resulting in power conversion efficiency up to 21.7% with negligible hysteresis. Furthermore, the hydrophobic interlayer also suppresses the perovskite decomposition by preventing the moisture penetration, thereby improving the humidity stability of the PSCs (>91% of the initial power conversion efficiency (PCE) after 30 d in 65 ± 5% humidity). Finally, several promising research perspectives based on field-effect passivation are also suggested for further conversion efficiency improvements and photovoltaic applications.  相似文献   

2.
At present, one of the major factors limiting the further improvement of inverted (p-i-n) perovskite solar cells (PSCs) is trap-assisted non-radiative recombination at the perovskite/electron transporting layer (ETL) interface. Surface passivation with organic ammonium salt is a powerful strategy to improve the performance of PSCs. Herein, an effective method by using propylamine hydroiodide (PAI) and 1,3-diaminopropane dihydroiodide (PDADI) is reported to modify the perovskite/ETL interface. These two ammonium salts do not form new perovskite but directly passivate the defects on the perovskite surface after annealing. The results show that the PDADI-modified perovskite films possess a lower surface defect density and less non-radiative recombination as well as improved charge carrier transport. Based on this strategy, the PDADI-modified p-i-n PSCs deliver an impressive efficiency of 25.09% (certified 24.58%) with an open-circuit voltage of 1.184 V. Furthermore, the unencapsulated PDADI-modified PSCs also exhibit good storage stability, retaining 91% of initial PCE at 65 °C in a N2 glove box for 1300 h. This strategy provides an efficient route to fabricate highly efficient and stable inverted p-i-n structured PSCs.  相似文献   

3.
With a certified efficiency as high as 25.2%, perovskite has taken the crown as the highest efficiency thin film solar cell material. Unfortunately, serious instability issues must be resolved before perovskite solar cells (PSCs) are commercialized. Aided by theoretical calculation, an appropriate multifunctional molecule, 2,2-difluoropropanediamide (DFPDA), is selected to ameliorate all the instability issues. Specifically, the carbonyl groups in DFPDA form chemical bonds with Pb2+ and passivate under-coordinated Pb2+ defects. Consequently, the perovskite crystallization rate is reduced and high-quality films are produced with fewer defects. The amino groups not only bind with iodide to suppress ion migration but also increase the electron density on the carbonyl groups to further enhance their passivation effect. Furthermore, the fluorine groups in DFPDA form both an effective barrier on the perovskite to improve its moisture stability and a bridge between the perovskite and HTL for effective charge transport. In addition, they show an effective doping effect in the HTL to improve its carrier mobility. With the help of the combined effects of these groups in DFPDA, the PSCs with DFPDA additive achieve a champion efficiency of 22.21% and a substantially improved stability against moisture, heat, and light.  相似文献   

4.
The buried interface has important effect on carrier extraction and nonradiative recombination of perovksite solar cells (PSCs). Herein, to inactivate the buried interfacial defects of perovskite and boost the crystallization quality of perovskite film, 3-amino-1-adamantanol (AAD) serves as a pre-buried interface modifier on nickel oxide (NiOx) surface to regulate the nucleation and crystallization process of perovskite precursor. The amino and hydroxyl groups in AAD molecule can synchronously coordinate with nickel ion (Ni3+) in NiOx and lead ion in perovskite, respectively. The dual action favors the ordered arrangement of AAD molecules between NiOx and perovskite, which not only enhances hole extraction in hole transport layer, but also provides active sites for homogeneous nucleation. Furthermore, AAD modifier blocks the unfavorable reaction between Ni3+ and perovskite, and effectively passivates the buried interfacial defects. The optimal inverted PSCs achieve a champion power conversion efficiency of 22.21% with negligible hysteresis, favorable thermal, optical, and long-term stability. Thus, this strategy of modulating perovskite nucleation and crystallization by pre-buried modifier is feasible for achieving efficient and stable inverted perovskite solar cells.  相似文献   

5.
2D halide perovskites have recently been recognized as a promising avenue in perovskite solar cells (PSCs) in terms of encouraging stability and defect passivation effect. However, the efficiency (less than 15%) of ultrastable 2D Ruddlesden–Popper PSCs still lag far behind their traditional 3D perovskite counterparts. Here, a rationally designed 2D‐3D perovskite stacking‐layered architecture by in situ growing 2D PEA2PbI4 capping layers on top of 3D perovskite film, which drastically improves the stability of PSCs without compromising their high performance, is reported. Such a 2D perovskite capping layer induces larger Fermi‐level splitting in the 2D‐3D perovskite film under light illumination, resulting in an enhanced open‐circuit voltage (Voc) and thus a higher efficiency of 18.51% in the 2D‐3D PSCs. Time‐resolved photoluminescence decay measurements indicate the facilitated hole extraction in the 2D‐3D stacking‐layered perovskite films, which is ascribed to the optimized energy band alignment and reduced nonradiative recombination at the subgap states. Benefiting from the high moisture resistivity as well as suppressed ion migration of the 2D perovskite, the 2D‐3D PSCs show significantly improved long‐term stability, retaining nearly 90% of the initial power conversion efficiency after 1000 h exposure in the ambient conditions with a high relative humidity level of 60 ± 10%.  相似文献   

6.
With rapid development of photovoltaic technology, flexible perovskite solar cells (f-PSCs) have attracted much attention for their light weight, high flexibility and portability. However, the power conversion efficiency (PCE) achieved so far is not yet comparable to that of rigid devices. This is mainly due to the great challenge of depositing homogeneous and high-quality perovskite films on flexible substrate. In this study, the pre-buried 3-aminopropionic acid hydroiodide (3AAH) additives into the electron transport layer (ETL) and modified the ETL/perovskite (PVK) interface by a bottom-up strategy. 3AAH treatment induced a templated perovskite grain growth and improved the quality of the ETL. By this, the residual stresses generated in PVK during the annealing-cooling process are released and converted into micro-compressive stresses. As a result, the defect density of f-PSCs with pre-buried 3AAH is reduced and the photovoltaic performance is greatly improved, reaching an exceptional PCE of 23.36%. This strategy provides a new idea to bridge the gap between flexible and rigid devices.  相似文献   

7.
While there is promising achievement in terms of the power conversion efficiency (PCE) of perovskite solar cells (PSCs), long-term stability has been considered the main obstacle for their practical application. In this work, the authors demonstrate the small monomer 2-(dimethylamino) ethyl methacrylate (DMAEMA) with unsaturated carboxylic acid ester bond in the antisolvent for perovskite formation to improve the PCE and stability. The results show that DMAEMA is self-polymerized and uniformly distributed in the film, contributing to the improved crystallinity of the perovskites. Equally important, it is found that there are newly established interactions of Pb2+ and DMAEMA, and iodine and ternary amine between DMAEMA and perovskites, which improves the uniformity of the lead (II) iodide vertical distribution along with the films and thus phase stability, as well as largely decreases defects density in the film. Overall, the inverted PSCs with DMAEMA exhibit a open-circuit voltage of 1.10 V, short-circuit current of 23.86 mA cm?2, fill factor of 0.82, and finally PCE reaches 21.52%. Meanwhile, the PSC stability is significantly improved due to the inhibition of the formation of iodine, reduction of the uncoordinated Pb2+, and suppression of phase segregation.  相似文献   

8.
This study reports a new nonfullerene electron transporting material (ETM) based on naphthalene diimide (NDI) small molecules for use in high‐performance perovskite solar cells (PSCs). These solar cells simultaneously achieve high power conversion efficiency (PCE) of over 20% and long‐term stability. New NDI‐ID (N,N′‐Bis(1‐indanyl)naphthalene‐1,4,5,8‐tetracarboxylic diimide) consisting of an N‐substituted indane group having simultaneous alicyclic and aromatic characteristics is synthesized by a low‐cost, one‐step reaction, and facile purification method. The partially flexible characteristics of an alicyclic cyclopentene group on indane groups open the possibility of low‐temperature solution processing. The conformational rigidity and aromaticity of phenyl and alicyclic groups contribute to high temporal stability by strong secondary bonds. NDI‐ID has herringbone packed semiconducting NDI cores that exhibit up to 0.2 cm2 V?1 s?1 electron mobility in field effect transistors. The inverted PSCs based on CH(NH2)2PbI3–xBrx with NDI‐ID ETM exhibit very high PCEs of up to 20.2%, which is better than that of widely used PCBM (phenyl‐C61‐butyric acid methyl ester) ETM‐based PSCs. Moreover, NDI‐ID‐based PSCs exhibit very high long‐term temporal stability, retaining 90% of the initial PCE after 500 h at 100 °C with 1 sun illumination without encapsulation. Therefore, NDI‐ID is a promising ETM for highly efficient, stable PSCs.  相似文献   

9.
10.
This study is on the enhancement of the efficiency of wide bandgap (FA0.8Cs0.2PbI1.8Br1.2) perovskite solar cells (PSCs) used as the top layer of the perovskite/perovskite tandem solar cell. Poly[bis(4-phenyl) (2,4,6-trimethylphenyl) amine] (PTAA) and the monomolecular layer called SAM layer are effective hole collection layers for APbI3 PSCs. However, these hole transport layers (HTL) do not give high efficiencies for the wide bandgap FA0.8Cs0.2PbI1.8Br1.2 PSCs. It is found that the surface-modified PTAA by monomolecular layer (MNL) improves the efficiency of PSCs. The improved efficiency is explained by the improved FA0.8Cs0.2PbI1.8Br1.2 film quality, decreased film distortion (low lattice disordering) and low density of the charge recombination site, and improves carrier collection by the surface modified PTAA layer. In addition, the relationship between the length of the alkyl group linking the anchor group and the carbazole group is also discussed. Finally, the wide bandgap lead PSCs (Eg = 1.77 eV) fabricated on the PTAA/monomolecular bilayer give a higher power conversion efficiency of 16.57%. Meanwhile, all-perovskite tandem solar cells with over 25% efficiency are reported by using the PTAA/monomolecular substrate.  相似文献   

11.
Perovskite surface treatment with additives has been reported to improve charge extraction, stability, and/or surface passivation. In this study, treatment of a 3D perovskite ((FAPbI3)1−x(MAPbBr3)x) layer with a thienothiophene-based organic cation (TTMAI), synthesized in this work, is investigated. Detailed analyses reveal that a 2D (n = 1) or quasi-2D layer does not form on the PbI2-rich surface 3D perovskite. TTMAI-treated 3D perovskite solar cells (PSCs) fabricated in this study show improved fill factors, providing an increase in their power conversion efficiencies (PCEs) from 17% to over 20%. It is demonstrated that the enhancement is due to better hole extraction by drift-diffusion simulations. Furthermore, thanks to the hydrophobic nature of the TTMAI, PSC maintains 82% of its initial PCE under 15% humidity for over 380 h (the reference retains 38%). Additionally, semitransparent cells are demonstrated reaching 17.9% PCE with treated 3D perovskite, which is one of the highest reported efficiencies for double cationic 3D perovskites. Moreover, the semitransparent 3D PSC (TTMAI-treated) maintains 87% of its initial efficiency for six weeks (>1000 h) when kept in the dark at room temperature. These results clearly show that this study fills a critical void in perovskite research where highly efficient and stable semitransparent perovskite solar cells are scarce.  相似文献   

12.
All-inorganic perovskite cesium lead iodide (CsPbI3) exhibits excellent prospects for commercial application as a light absorber in single-junction or tandem solar cells due to its outstanding thermal stability and proper bandgap. However, the device performance of CsPbI3-based perovskite solar cells (PSCs) is still restricted by the unsatisfactory crystal quality and severe non-radiative recombination. Herein, inorganic additive ammonium halides are introduced into the precursor solution to regulate the nucleation and crystallization of the CsPbI3 film by exploiting the atomic interaction between the ammonium group and the Pb–I framework. The grain boundaries and interfacial contact of the CsPbI3 film have been improved, which leads to significant suppression in the non-radiative recombination and an enhancement in the charge transport ability. With these benefits, a high efficiency of 18.7% together with an extraordinarily high fill factor of 0.83–0.84 has been achieved, comparable to the highest records reported so far. Moreover, the cell exhibits ultra-high photoelectrical stability under continuous light illumination and high bias voltage with 96% of its initial power-conversion efficiency being sustained after 2000 h operation, even superior to the world-champion CsPbI3 solar cell. The findings are promising for the development and application of all-inorganic PSCs using a simple inorganic additive strategy.  相似文献   

13.
Perovskite solar cells (PSCs) have witnessed rapid development toward commercialization based on their superior efficiency except for some remained misgivings about their poor stability primarily originating from interfacial problems. Robust back interface for neutralization of crystal defects, depression of dopant lithium ions (Li+) diffusion, and even inhibition of toxic lead (Pb) leakage is highly desirable; however, it remains a great challenge. Herein, a cost-effective interfacial therapy approach is developed to simultaneously alleviate the obstacles aforementioned. A small molecule, 1,4-dithiane with unique chair structure, is adapted to interact with under-coordinated Pb2+ on perovskite surface and Li+ from hole transport layer, neutralizing interfacial defects and suppressing Li+ diffusion. Besides, the presence of 1,4-dithiane can efficiently modulate interfacial energetics, enhance hydrophobicity of PSCs, and anchor Pb atoms via S Pb bond. Consequently, the target devices perform better than control devices when exposed to light-soaking, moisture, and thermal stress owing to the synergistic suppression of trap-state density, ions migration, and moisture permeation. The optimized target device delivers a champion efficiency of 23.27% with mitigated Pb leakage. This study demonstrates a promising functionalized modification strategy for constructing efficient, stable, and eco-friendly PSCs.  相似文献   

14.
Halide perovskites are qualified to meet the flexibility demands of optoelectronic field because of their merits of flexibility, lightness, and low cost. However, the intrinsic defects and deformation-induced ductile fracture in both perovskite and buried interface significantly restrict the photoelectric performance and longevity of flexible perovskite solar cells (PVSCs). Here, a dual-dynamic cross-linking network is schemed to boost the photovoltaic efficiency and mechanical stability of flexible PVSCs by incorporating natural polymerizable small molecule α-lipoic acid (LA). The LA therein can be autonomously ring-opening polymerized through dynamic disulfide bonds and hydrogen bonds, concurrently forming coordination bonds to interact with perovskite component. Importantly, the polymerization product can serve as efficacious passivating and toughening agents to simultaneously optimize interfacial contact, enhance perovskite crystallinity and sustain robust mechanical bendability. Subsequently, the rigid (or flexible) p-i-n device realizes a champion efficiency of 22.43% (or 19.03%) with prominent operational stability. Moreover, the dual-dynamic cross-linking network endows PVSCs with bendability and self-healing capacity, allowing the optimized devices to retain >80% efficiency after 3000 bending cycles, and subsequently restore to ≈95% of its initial efficiency under mild heat-treatment. This toughening and self-healing strategy provides a facile and efficient path to prolong operational lifetime of flexible device.  相似文献   

15.
Introducing excess PbI2 has proven to be an effective in situ passivation strategy for enhancing efficiency of perovskite solar cells (PSCs). Nevertheless, the photoinstability and hysteresis are still tough issues owing to the photolysis nature of PbI2. Moreover, the humidity-related degradation of perovskite films is also a difficult territory to cover in such an in situ passivation strategy. Herein, a synergistic strategy is reported via initiatively inducing vertical graded PbI2 distribution (GPD) in the whole perovskite film and capping a cis-Ru(H2dcbpy)(dnbpy)(NCS)2 (Z907) internal encapsulation (IE) layer on the surface to ameliorate the above issues. The GPD design can enhance luminescence, prolong carrier lifetimes, ascertaining the improvement of efficiency and elimination of photoinstability in the PSCs. Besides, the introduced IE layer not only can promote the moisture and thermal resistance, but also inhibit Pb leakage and ion migration in the PSCs. Through the synergetic regulations, the resultant PSCs exhibit an impressive open circuit voltage (VOC) of 1.253 V, fill factor of 81.25%, and power conversion efficiency (PCE) of 24.28%. Moreover, the PSCs maintain 91% of its initial PCE at relative humidity of 85% after 500 h aging and 94% under continuous heating at 85 °C after 750 h aging.  相似文献   

16.
In this contribution, a facile and universal method is successfully reported to fabricate perovskite solar cells (PSCs) with enhanced efficiency and stability. Through dissolving functional conjugated polymers in antisolvent chlorobenzene to treat the spinning CH3NH3PbI3 perovskite film, the resultant devices exhibit significantly enhanced efficiency and longevity simultaneously. In‐depth characterizations demonstrate that thin polymer layer well covers the top surface of perovskite film, resulting in certain surface passivation and morphology modification. More importantly, it is shown that through rational chemical modification, namely molecular fluorination, the air stability and photostability of the perovskite solar cells are remarkably enhanced. Considering the vast selection of conjugated polymer materials and easy functional design, promising new results are expected in further enhancement of device performance. It is believed that the findings provide exciting insights into the role of conjugated polymer in improving the current perovskite‐based solar cells.  相似文献   

17.
Colloidal lead sulfide (PbS) quantum dots (QDs), which possess quantum confinement effect and processing compatibility with perovskite, are regarded as an excellent material for optimizing perovskite solar cells (PSCs). However, the existing PSCs optimized by PbS QDs are still facing the challenges of poor performance of the charge transport layers, low utilization in the near-infrared (NIR) region, and unsuitable energy level alignment, which limit the improvement of power conversion efficiency (PCE). Herein, a synchronous optimization strategy is realized via simultaneously introducing PbS QDs into SnO2 electron transport layer and employing rare-earth-doped PbS QDs (Eu:PbS QDs) film with hydrophobic chain ligands as the NIR light-absorping layer and hole transport layer (HTL) of devices. PbS QDs effectively decrease the density of trap states by passivating defects. Eu:PbS QDs film with adjustable bandgap is employed as an absorption layer to broaden the NIR spectral absorption. The well-matched energy level between Eu:PbS QDs layer and perovskite layer implies efficient hole transfer at the interface. The successful synchronous optimization greatly elevates all photovoltaic parameters, reaching a maximum PCE of 23.27%. This PCE is the highest for PSCs utilizing PbS QDs material in recent years. The optimized PSCs retain long-term moisture and light stability.  相似文献   

18.
SnO2 as an electron transport layer (ETL) has been widely used in regular planar perovskite solar cells (PSCs) owing to its high optical transmittance, less photocatalytic activity, and low-temperature processing. However, SnO2-based PSCs still face many challenges which greatly impair their efficiency and stability of PSCs. Herein, a novel and effective multifunctional modification strategy is proposed by incorporating streptomycin sulfate (STRS) molecules with multiple functional groups into SnO2 ETL. STRS can significantly suppress SnO2 nanoparticle agglomeration, improve the electronic property of SnO2, as well as reduce nonradiative recombination. At the same time, interfacial residual tensile stress is released and the interfacial energy level alignment becomes more matched. As a result, the STRS-modified PSCs achieve a higher efficiency of 22.89% compared to 20.61% of the control device and exhibit a hysteresis-free feature. The humidity and thermal stability of PSCs based on STRS-SnO2 are significantly improved. Furthermore, the efficiency of flexible devices increased from 19.74% to 20.79%, and the devices still maintain >80% of initial PCE after 4500 bending cycles with a bend radius of 5 mm. This study provides a low-cost, facile, and efficient strategy for achieving high efficiency and stability in PSCs.  相似文献   

19.
Vacuum evaporation is promising for the scalable fabrication of perovskite solar cells (PSCs). Nevertheless, the poor thermal conductivity of metal halide powder leads to unfavorable temperature inhomogeneity, which destabilizes the evaporation rate, posing a major challenge to the reproducible deposition of perovskite films, particularly by coevaporation. Herein, a molten salt strategy is reported for sequentially vacuum evaporation of PSCs. The molten salt increases the thermal conductivity of metal halides and greatly homogenizes the temperature, which stabilizes the evaporation rate and the composition of the resulting perovskite films. The PSCs yield power conversion efficiencies (PCEs) of ≈24% with exceptional reproducibility. The unencapsulated PSCs maintain 85% of the initial PCE after 3600 h of maximum power point tracking and maintain 85% of the initial PCE after being heated at 60 °C for 3000 h. The molten salt strategy opens a new avenue for the application of evaporation in perovskite optoelectronics.  相似文献   

20.
Perovskite solar cells (PSCs) are one of the most promising solar energy conversion technologies owing to their rapidly developing power conversion efficiency (PCE). Low‐temperature solution processing of the perovskite layer enables the fabrication of flexible devices. However, their application has been greatly hindered due to the lack of strategies to fabricate high‐quality electron transport layers (ETLs) at the low temperatures (≈100 °C) that most flexible plastic substrates can withstand, leading to poor performances for flexible PSCs. In this work, through combining the spin‐coating process with a hydrothermal treatment method, ligand‐free and highly crystalline SnO2 ETLs are successfully fabricated at low temperature. The flexible PSCs based on this SnO2 ETL exhibit an excellent PCE of 18.1% (certified 17.3%). The flexible PSCs maintained 85% of the initial PCE after 1000 bending cycles and over 90% of the initial PCE after being stored in ambient air for 30 days without encapsulation. The investigation reveals that hydrothermal treatment not only promotes the complete removal of organic surfactants coated onto the surface of the SnO2 nanoparticles by hot water vapor but also enhances crystallization through the high vapor pressure of water, leading to the formation of high‐quality SnO2 ETLs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号