首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Elevated blood pressure and hyperglycaemia frequently coexist and are both components of metabolic syndrome. Enhanced cardiovascular risk is strongly associated with diabetes and the occurrence of hypertension. Both hypertension and type 2 diabetes, if treated inappropriately, lead to serious complications, increasing the mortality of patients and generating much higher costs of health systems. This is why it is of great importance to find the missing link between hypertension and diabetes development and to simultaneously search for drugs influencing these two disorders or even drugs aimed at their pathological bases. Standard antihypertensive therapy mainly focuses on blood pressure reduction, while novel drugs also possess a wide range of pleiotropic modes of actions, such as cardio- and nephroprotective properties or body weight reduction. These properties are especially desirable in a situation when type 2 diabetes coexists with hypertension. This review describes the connections between diabetes and hypertension development and briefly summarises the current knowledge regarding attempts to define targets for the treatment of high blood pressure in diabetic patients. It also describes the standard hypotensive drugs preferred in patients with type 2 diabetes, as well as novel drugs, such as finerenone, esaxerenone, sodium–glucose co-transporter-2 inhibitors, glucagon-like peptide-1 analogues and sacubitril/valsartan.  相似文献   

2.
Arginase 2 (ARG2) is a manganese metalloenzyme involved in several tissue specific processes, from physiology to pathophysiology. It is variably expressed in extra-hepatic tissues and is located in the mitochondria. In human pancreatic beta cells, ARG2 is downregulated in type 2 diabetes. The enzyme regulates the synthesis of polyamines, that are involved in pancreas development and regulation of beta cell function. Here, we discuss several features of ARG2 and polyamines, which can be relevant to the pathophysiology of type 2 diabetes.  相似文献   

3.
Type 2 diabetes (T2D) has been considered a relentlessly worsening disease, due to the progressive deterioration of the pancreatic beta cell functional mass. Recent evidence indicates, however, that remission of T2D may occur in variable proportions of patients after specific treatments that are associated with recovery of beta cell function. Here we review the available information on the recovery of beta cells in (a) non-diabetic individuals previously exposed to metabolic stress; (b) T2D patients following low-calorie diets, pharmacological therapies or bariatric surgery; (c) human islets isolated from non-diabetic organ donors that recover from “lipo-glucotoxic” conditions; and (d) human islets isolated from T2D organ donors and exposed to specific treatments. The improvement of insulin secretion reported by these studies and the associated molecular traits unveil the possibility to promote T2D remission by directly targeting pancreatic beta cells.  相似文献   

4.
Globally, the incidence of type 2 diabetes mellitus (T2DM) and Alzheimer’s disease (AD) epidemics is increasing rapidly and has huge financial and emotional costs. The purpose of the current review article is to discuss the shared pathophysiological connections between AD and T2DM. Research findings are presented to underline the vital role that insulin plays in the brain’s neurotransmitters, homeostasis of energy, as well as memory capacity. The findings of this review indicate the existence of a mechanistic interplay between AD pathogenesis with T2DM and, especially, disrupted insulin signaling. AD and T2DM are interlinked with insulin resistance, neuroinflammation, oxidative stress, advanced glycosylation end products (AGEs), mitochondrial dysfunction and metabolic syndrome. Beta-amyloid, tau protein and amylin can accumulate in T2DM and AD brains. Given that the T2DM patients are not routinely evaluated in terms of their cognitive status, they are rarely treated for cognitive impairment. Similarly, AD patients are not routinely evaluated for high levels of insulin or for T2DM. Studies suggesting AD as a metabolic disease caused by insulin resistance in the brain also offer strong support for the hypothesis that AD is a type 3 diabetes.  相似文献   

5.
Type II diabetes mellitus (T2DM) is one of the most prevalent diseases in the world, associated with diabetic foot ulcers and impaired wound healing. There is an ongoing need for interventions effective in treating these two problems. Pre-clinical studies in this field rely on adequate animal models. However, producing such a model is near-impossible given the complex and multifactorial pathogenesis of T2DM. A leptin-deficient murine model was developed in 1959 and relies on either dysfunctional leptin (ob/ob) or a leptin receptor (db/db). Though monogenic, this model has been used in hundreds of studies, including diabetic wound healing research. In this study, we systematically summarize data from over one hundred studies, which described the mechanisms underlying wound healing impairment in this model. We briefly review the wound healing dynamics, growth factors’ dysregulation, angiogenesis, inflammation, the function of leptin and insulin, the role of advanced glycation end-products, extracellular matrix abnormalities, stem cells’ dysregulation, and the role of non-coding RNAs. Some studies investigated novel chronic diabetes wound models, based on a leptin-deficient murine model, which was also described. We also discussed the interventions studied in vivo, which passed into human clinical trials. It is our hope that this review will help plan future research.  相似文献   

6.
RAS guanyl nucleotide-releasing proteins (RASGRPs) are important proteins that act as guanine nucleotide exchange factors, which activate small GTPases and function as molecular switches for intracellular signals. The RASGRP family is composed of RASGRP1–4 proteins and activates the small GTPases, RAS and RAP. Among them, RASGRP2 has different characteristics from other RASGRPs in that it targets small GTPases and its localizations are different. Many studies related to RASGRP2 have been reported in cells of the blood cell lineage. Furthermore, RASGRP2 has also been reported to be associated with Huntington’s disease, tumors, and rheumatoid arthritis. In addition, we also recently reported RASGRP2 expression in vascular endothelial cells, and clarified the involvement of xenopus Rasgrp2 in the vasculogenesis process and multiple signaling pathways of RASGRP2 in human vascular endothelial cells with stable expression of RASGRP2. Therefore, this article outlines the existing knowledge of RASGRP2 and focuses on its expression and role in vascular endothelial cells, and suggests that RASGRP2 functions as a protective factor for maintaining healthy blood vessels.  相似文献   

7.
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disorder worldwide. Several lines of evidence have indicated a pathogenic role of insulin resistance, and a strong association with type 2 diabetes (T2MD) and metabolic syndrome. Importantly, NAFLD appears to enhance the risk for T2MD, as well as worsen glycemic control and cardiovascular disease in diabetic patients. In turn, T2MD may promote NAFLD progression. The opportunity to take into account NAFLD in T2MD prevention and care has stimulated several clinical studies in which antidiabetic drugs, such as metformin, thiazolidinediones, GLP-1 analogues and DPP-4 inhibitors have been evaluated in NAFLD patients. In this review, we provide an overview of preclinical and clinical evidences on the possible efficacy of antidiabetic drugs in NAFLD treatment. Overall, available data suggest that metformin has beneficial effects on body weight reduction and metabolic parameters, with uncertain effects on liver histology, while pioglitazone may improve liver histology. Few data, mostly preclinical, are available on DPP4 inhibitors and GLP-1 analogues. The heterogeneity of these studies and the small number of patients do not allow for firm conclusions about treatment guidelines, and further randomized, controlled studies are needed.  相似文献   

8.
Persistence of the isoflavones formononetin and biochanin A in soil was investigated by HPLC analysis. Biochanin A disappeared more rapidly than formononetin in nonsterile soil. In soil planted with corn seedlings, the disappearance was dramamtic for both isoflavones. The results suggested that soil microbial populations were able to metabolize these isoflavones. The response of several microbial populations to isoflavone amendments was measured in soil samples obtained from Michigan potato fields. Results suggested that the isoflavones formononetin and biochanin A were able to stimulate the growth of soil microorganisms.  相似文献   

9.
Chronic conditions such as obesity, diabetes, and dementia are increasing in the United States (US) population. Knowledge of these chronic conditions, preventative measures, and proper management tactics is important and critical to preventing disease. The overlap between obesity, diabetes, and dementia is becoming further elucidated. These conditions share a similar origin through the components of increasing age, gender, genetic and epigenetic predispositions, depression, and a high-fat Western diet (WD) that all contribute to the inflammatory state associated with the development of obesity, diabetes, and dementia. This inflammatory state leads to the dysregulation of food intake and insulin resistance. Obesity is often the cornerstone that leads to the development of diabetes and, subsequently, in the case of type 2 diabetes mellitus (T2DM), progression to “type 3 diabetes mellitus (T3DM)”. Obesity and depression are closely associated with diabetes. However, dementia can be avoided with lifestyle modifications, by switching to a plant-based diet (e.g., a Mediterranean diet (MD)), and increasing physical activity. Diet and exercise are not the only treatment options. There are several surgical and pharmacological interventions available for prevention. Current and future research within each of these fields is warranted and offers the chance for new treatment options and a better understanding of the pathogenesis of each condition.  相似文献   

10.
Recent studies suggested an association of endothelial microRNA-126 (miR-126) with type 2 diabetes mellitus (T2DM). In the current study, we examined whether circulating miR-126 is associated with T2DM and pre-diabetic syndrome. The study included 82 subjects with impaired glucose tolerance (IGT), 75 subjects with impaired fasting glucose (IFG), 160 patients with newly diagnosed T2DM, and 138 healthy individuals. Quantitative polymerase chain reaction (qPCR) was used to examine serum miR-126. Serum miR-126 was significantly lower in IGT/IFG subjects and T2DM patients than in healthy controls (p < 0.05). After six months of treatment (diet control and exercise in IGT/IFG subjects, insulin plus diet control and exercise in T2DM patients), serum miR-126 increased significantly (p < 0.05). An analysis based on serum miR-126 in the sample revealed a significantly higher odds ratio (OR) for the subjects with the lowest 1/3 of serum miR-126 for T2DM (OR: 3.500, 95% confidence interval: 1.901–6.445, p < 0.05) than subjects within the highest 1/3 of serum miR-126. Such an association was still apparent after adjusting for other major risk factors. The area under the curve (AUC) for the receiver-operating characteristic (ROC) analysis was 0.792 (95% confidence interval: 0.707–0.877, p < 0.001). These results encourage the use of serum miR-126 as a biomarker for pre-diabetes and diabetes mellitus, as well as therapeutic response.  相似文献   

11.
12.
Type 2 diabetes (T2D) typically occurs in the setting of obesity and insulin resistance, where hyperglycemia is associated with decreased pancreatic β-cell mass and function. Loss of β-cell mass has variably been attributed to β-cell dedifferentiation and/or death. In recent years, it has been proposed that circulating epigenetically modified DNA fragments arising from β cells might be able to report on the potential occurrence of β-cell death in diabetes. Here, we review published literature of DNA-based β-cell death biomarkers that have been evaluated in human cohorts of islet transplantation, type 1 diabetes, and obesity and type 2 diabetes. In addition, we provide new data on the applicability of one of these biomarkers (cell free unmethylated INS DNA) in adult cohorts across a spectrum from obesity to T2D, in which no significant differences were observed, and compare these findings to those previously published in youth cohorts where differences were observed. Our analysis of the literature and our own data suggest that β-cell death may occur in subsets of individuals with obesity and T2D, however a more sensitive method or refined study designs are needed to provide better alignment of sampling with disease progression events.  相似文献   

13.
The importance of cardiovascular biomarkers in clinical practice increased dramatically in the last years, and the interest extends from the diagnosis purpose to prognostic applications and response to specific treatment. Acute heart failure, ischemic heart failure, and COVID-19 infection represent different clinical settings that are challenging in terms of the proper prognostic establishment. The aim of the present review is to establish the useful role of sST2, the soluble form of the interleukin-1 receptor superfamily (ST2), physiologically involved in the signaling of interleukin-33 (IL-33)-ST2 axis, in the clinical setting of acute heart failure (HF), ischemic heart disease, and SARS-CoV-2 acute infection. Molecular mechanisms associated with the IL33/ST2 signaling pathways are discussed in view of the clinical usefulness of biomarkers to early diagnosis, evaluation therapy to response, and prediction of adverse outcomes in cardiovascular diseases.  相似文献   

14.
Since early times, being overweight and obesity have been associated with impaired glucose metabolism and type 2 diabetes (T2D). Similarly, a less frequent adult-onset diabetes in low body mass index (BMI) people has been known for many decades. This form is mainly found in developing countries, whereby the largest increase in diabetes incidence is expected in coming years. The number of non-obese patients with T2D is also on the rise among non-white ethnic minorities living in high-income Western countries due to growing migratory flows. A great deal of energy has been spent on understanding the mechanisms that bind obesity to T2D. Conversely, the pathophysiologic features and factors driving the risk of T2D development in non-obese people are still much debated. To reduce the global burden of diabetes, we need to understand why not all obese people develop T2D and not all those with T2D are obese. Moreover, through both an effective prevention and the implementation of an individualized clinical management in all people with diabetes, it is hoped that this will help to reduce this global burden. The purpose of this review is to take stock of current knowledge about the pathophysiology of diabetes not associated to obesity and to highlight which aspects are worthy of future studies.  相似文献   

15.
通过高糖高脂饮食诱导,联合小剂量链脲佐菌素部分破坏胰岛b细胞,建立II型糖尿病SD大鼠模型. 结果表明,模型组大鼠饲喂高糖高脂饲料4周后,腹腔注射30 mg/kg链脲佐菌素,1周后86.7%的大鼠空腹血糖高于13.8 mmol/L,在8周观察期内稳定,糖耐量受损. 皮下注射50 mg/kg艾塞那肽降血糖作用明显,3 h时较初始水平下降38.2%,表明糖尿病大鼠对II型糖尿病治疗药物艾塞那肽的反应良好. 第13周处死大鼠,胰脏病理切片检查,模型组大鼠部分胰岛b细胞被破坏. 建立的模型可用于药效学的相关评价研究.  相似文献   

16.
Type 2 diabetes mellitus (T2DM) patients are at a higher risk of developing Alzheimer’s disease (AD). Mounting evidence suggests the emerging important role of circadian rhythms in many diseases. Circadian rhythm disruption is considered to contribute to both T2DM and AD. Here, we review the relationship among circadian rhythm disruption, T2DM and AD, and suggest that the occurrence and progression of T2DM and AD may in part be associated with circadian disruption. Then, we summarize the promising therapeutic strategies targeting circadian dysfunction for T2DM and AD, including pharmacological treatment such as melatonin, orexin, and circadian molecules, as well as non-pharmacological treatments like light therapy, feeding behavior, and exercise.  相似文献   

17.
Vascular complications are the leading cause of morbidity and mortality among patients with type 2 diabetes mellitus (T2DM). These vascular abnormalities result in a chronic hyperglycemic state, which influences many signaling molecular pathways that initially lead to increased oxidative stress, increased inflammation, and endothelial dysfunction, leading to both microvascular and macrovascular complications. Endothelial dysfunction represents the initial stage in both types of vascular complications; it represents “mandatory damage” in the development of microvascular complications and only “introductory damage” in the development of macrovascular complications. Increasing scientific evidence has revealed an important role of the Wnt pathway in the pathophysiology of the vascular wall. It is well known that the Wnt pathway is altered in patients with T2DM. This review aims to be an update of the current literature related to the Wnt pathway molecules that are altered in patients with T2DM, which may also be the cause of damage to the vasculature. Both microvascular complications (retinopathy, nephropathy, and neuropathy) and macrovascular complications (coronary artery disease, cerebrovascular disease, and peripheral arterial disease) are analyzed. This review aims to concisely concentrate all the evidence to facilitate the view on the vascular involvement of the Wnt pathway and its components by highlighting the importance of exploring possible therapeutic strategy for patients with T2DM who develop vascular pathologies.  相似文献   

18.
Hypoglycemia, as a complication of type 2 diabetes (T2D), causes increased morbidity and mortality but the physiological response underlying hypoglycemia has not been fully elucidated. Small noncoding microRNA (miRNA) have multiple downstream biological effects. This pilot exploratory study was undertaken to determine if induced miRNA changes would persist and contribute to effects seen 24 h post-hypoglycemia. A parallel, prospective study design was employed, involving T2D (n = 23) and control (n = 23) subjects. The subjects underwent insulin-induced hypoglycemia (2 mmol/L; 36 mg/dL); blood samples were drawn at baseline, upon the induction of hypoglycemia, and 4 h and 24 h post-hypoglycemia, with a quantitative polymerase chain reaction analysis of miRNA undertaken. The baseline miRNAs did not differ. In the controls, 15 miRNAs were downregulated and one was upregulated (FDR < 0.05) from the induction of hypoglycemia to 4 h later while, in T2D, only four miRNAs were altered (downregulated), and these were common to both cohorts (miR-191-5p; miR-143-3p; let-7b-5p; let-7g-5p), correlated with elevated glucagon levels, and all were associated with energy balance. From the induction of hypoglycemia to 24 h, 14 miRNAs were downregulated and 5 were upregulated (FDR < 0.05) in the controls; 7 miRNAs were downregulated and 7 upregulated (FDR < 0.05) in T2D; a total of 6 miRNAs were common between cohorts, 5 were downregulated (miR-93-5p, let-7b-5p, miR-191-5p, miR-185-5p, and miR-652-3p), and 1 was upregulated (miR-369-3p). An ingenuity pathway analysis indicated that many of the altered miRNAs were associated with metabolic and coagulation pathways; however, of the inflammatory proteins expressed, only miR-143-3p at 24 h correlated positively with tumor necrosis factor-α (TNFa; p < 0.05 and r = 0.46) and negatively with toll-like receptor-4 (TLR4; p < 0.05 and r = 0.43). The MiRNA levels altered by hypoglycemia reflected changes in counter-regulatory glucagon and differed between cohorts, and their expression at 24 h suggests miRNAs may potentiate and prolong the physiological response. Trial registration: ClinicalTrials.gov NCT03102801.  相似文献   

19.
Cardiac autonomic neuropathy (CAN) is one of the earliest complications of type 2 diabetes (T2D), presenting a silent cause of cardiovascular morbidity and mortality. Recent research relates the pathogenesis of cardiovascular disease in T2D to an ensuing chronic, low-grade proinflammatory and pro-oxidative environment, being the hallmark of the metabolic syndrome. Metabolic inflammation emerges as adipose tissue inflammatory changes extending systemically, on the advent of hyperglycemia, to reach central regions of the brain. In light of changes in glucose and insulin homeostasis, dysbiosis or alteration of the gut microbiome (GM) emerges, further contributing to inflammatory processes through increased gut and blood–brain barrier permeability. Interestingly, studies reveal that the determinants of oxidative stress and inflammation progression exist at the crossroad of CAN manifestations, dictating their evolution along the natural course of T2D development. Indeed, sympathetic and parasympathetic deterioration was shown to correlate with markers of adipose, vascular, and systemic inflammation. Additionally, evidence points out that dysbiosis could promote a sympatho-excitatory state through differentially affecting the secretion of hormones and neuromodulators, such as norepinephrine, serotonin, and γ-aminobutyric acid, and acting along the renin–angiotensin–aldosterone axis. Emerging neuronal inflammation and concomitant autophagic defects in brainstem nuclei were described as possible underlying mechanisms of CAN in experimental models of metabolic syndrome and T2D. Drugs with anti-inflammatory characteristics provide potential avenues for targeting pathways involved in CAN initiation and progression. The aim of this review is to delineate the etiology of CAN in the context of a metabolic disorder characterized by elevated oxidative and inflammatory load.  相似文献   

20.
We aim to compare the relative heritability contributed by variants of behavior-related environmental phenotypes and elucidate the role of these factors in the conundrum of “missing heritability” of type 2 diabetes. Methods: We used Linkage-Disequilibrium Adjusted Kinships (LDAK) and LDAK-Thin models to calculate the relative heritability of each variant and compare the relative heritability for each phenotype. Biological analysis was carried out for the phenotype whose variants made a significant contribution. Potential hub genes were prioritized based on topological parameters of the protein-protein interaction network. We included 16 behavior-related phenotypes and 2607 valid variants. In the LDAK model, we found the variants of alcohol consumption and caffeine intake were identified as contributing higher relative heritability than that of the random variants. Compared with the relative expected heritability contributed by the variants associated with type 2 diabetes, the relative expected heritability contributed by the variants associated with these two phenotypes was higher. In the LDAK-Thin model, the relative heritability of variants of 11 phenotypes was statistically higher than random variants. Biological function analysis showed the same distributions among type 2 diabetes and alcohol consumption. We eventually screened out 31 hub genes interacting intensively, four of which were validated and showed the upregulated expression pattern in blood samples seen in type 2 diabetes cases. Conclusion: We found that alcohol consumption contributed higher relative heritability. Hub genes may influence the onset of type 2 diabetes by a mediating effect or a pleiotropic effect. Our results provide new insight to reveal the role of behavior-related factors in the conundrum of “missing heritability” of type 2 diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号