首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
Friedreich’s ataxia is an autosomal recessive neurogenetic disease that is mainly associated with atrophy of the spinal cord and progressive neurodegeneration in the cerebellum. The disease is caused by a GAA-expansion in the first intron of the frataxin gene leading to a decreased level of frataxin protein, which results in mitochondrial dysfunction. Currently, there is no effective treatment to delay neurodegeneration in Friedreich’s ataxia. A plausible therapeutic approach is gene therapy. Indeed, Friedreich’s ataxia mouse models have been treated with viral vectors en-coding for either FXN or neurotrophins, such as brain-derived neurotrophic factor showing promising results. Thus, gene therapy is increasingly consolidating as one of the most promising therapies. However, several hurdles have to be overcome, including immunotoxicity and pheno-toxicity. We review the state of the art of gene therapy in Friedreich’s ataxia, addressing the main challenges and the most feasible solutions for them.  相似文献   

2.
Despite the availability of an effective vaccine against hepatitis B virus (HBV), chronic infection with the virus remains a major global health concern. Current drugs against HBV infection are limited by emergence of resistance and rarely achieve complete viral clearance. This has prompted vigorous research on developing better drugs against chronic HBV infection. Advances in understanding the life cycle of HBV and improvements in gene-disabling technologies have been impressive. This has led to development of better HBV infection models and discovery of new drug candidates. Ideally, a regimen against chronic HBV infection should completely eliminate all viral replicative intermediates, especially covalently closed circular DNA (cccDNA). For the past few decades, nucleic acid-based therapy has emerged as an attractive alternative that may result in complete clearance of HBV in infected patients. Several genetic anti-HBV strategies have been developed. The most studied approaches include the use of antisense oligonucleotides, ribozymes, RNA interference effectors and gene editing tools. This review will summarize recent developments and progress made in the use of gene therapy against HBV.  相似文献   

3.
Gene therapy (GT) for ocular disorders has advanced the most among adeno-associated virus (AAV)-mediated therapies, with one product already approved in the market. The bank of retinal gene mutations carefully compiled over 30 years, the small retinal surface that does not require high clinical vector stocks, and the relatively immune-privileged environment of the eye explain such success. However, adverse effects due to AAV-delivery, though rare in the retina have led to the interruption of clinical trials. Risk mitigation, as the key to safe and efficient GT, has become the focus of ‘bedside-back-to-bench’ studies. Herein, we overview the inflammatory adverse events described in retinal GT trials and analyze which components of the retinal immunological environment might be the most involved in these immune responses, with a focus on the innate immune system composed of microglial surveillance. We consider the factors that can influence inflammation in the retina after GT such as viral sensors in the retinal tissue and CpG content in promoters or transgene sequences. Finally, we consider options to reduce the immunological risk, including dose, modified capsids or exclusion criteria for clinical trials. A better understanding and mitigation of immune risk factors inducing host immunity in AAV-mediated retinal GT is the key to achieving safe and efficient GT.  相似文献   

4.
Schwannomas are tumors derived from Schwann-lineage cells, cells that protect and support myelinated nerves in the peripheral nervous system. They are typically slow-growing, encapsulated and benign. These tumors develop along peripheral, spinal and cranial nerves causing pain, sensory-motor dysfunction and death. Primary treatment for schwannoma is operative resection which can be associated with significant morbidity. Pharmacotherapy is largely restricted to bevacizumab, which has minimal or no efficacy for many patients and can be associated with treatment-limiting adverse effects. Given the suffering and morbidity associated with schwannoma and the paucity of therapeutic options, there is an urgent need for safe and effective therapies for schwannomas. We previously demonstrated that adeno-associated virus serotype 1 (AAV1) vector mediated delivery of the inflammasome adaptor protein, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) under the control of the P0 promoter, produced a prolonged reduction in tumor volume and tumor-associated pain in human xenograft and mouse syngeneic schwannoma models. Here, we present data essential for the translation of our AAV1-P0-ASC schwannoma gene therapy to clinical trials. We determine the minimum effective dose of AAV1-P0-hASC required to induce an anti-tumor effect in the xenograft human-schwannoma model. We also show that the presence of preexisting AAV1 immunity does not alter the antitumor efficacy of AAV-P0-mASC in a syngeneic mouse schwannoma model. Furthermore, the maximum deliverable intratumoral dose of AAV1-P0-ASC was not associated with neuronal toxicity in immunocompetent mice. Taken together, these safety and efficacy data support the translation of the AAV1-P0-ASC schwannoma gene therapy strategy to clinical trials.  相似文献   

5.
Hereditary anemia has various manifestations, such as sickle cell disease (SCD), Fanconi anemia, glucose-6-phosphate dehydrogenase deficiency (G6PDD), and thalassemia. The available management strategies for these disorders are still unsatisfactory and do not eliminate the main causes. As genetic aberrations are the main causes of all forms of hereditary anemia, the optimal approach involves repairing the defective gene, possibly through the transplantation of normal hematopoietic stem cells (HSCs) from a normal matching donor or through gene therapy approaches (either in vivo or ex vivo) to correct the patient’s HSCs. To clearly illustrate the importance of cell and gene therapy in hereditary anemia, this paper provides a review of the genetic aberration, epidemiology, clinical features, current management, and cell and gene therapy endeavors related to SCD, thalassemia, Fanconi anemia, and G6PDD. Moreover, we expound the future research direction of HSC derivation from induced pluripotent stem cells (iPSCs), strategies to edit HSCs, gene therapy risk mitigation, and their clinical perspectives. In conclusion, gene-corrected hematopoietic stem cell transplantation has promising outcomes for SCD, Fanconi anemia, and thalassemia, and it may overcome the limitation of the source of allogenic bone marrow transplantation.  相似文献   

6.
Anti-angiogenic therapy is an old method to fight cancer that aims to abolish the nutrient and oxygen supply to the tumor cells through the decrease of the vascular network and the avoidance of new blood vessels formation. Most of the anti-angiogenic agents approved for cancer treatment rely on targeting vascular endothelial growth factor (VEGF) actions, as VEGF signaling is considered the main angiogenesis promotor. In addition to the control of angiogenesis, these drugs can potentiate immune therapy as VEGF also exhibits immunosuppressive functions. Despite the mechanistic rational that strongly supports the benefit of drugs to stop cancer progression, they revealed to be insufficient in most cases. We hypothesize that the rehabilitation of old drugs that interfere with mechanisms of angiogenesis related to tumor microenvironment might represent a promising strategy. In this review, we deepened research on the molecular mechanisms underlying anti-angiogenic strategies and their failure and went further into the alternative mechanisms that impact angiogenesis. We concluded that the combinatory targeting of alternative effectors of angiogenic pathways might be a putative solution for anti-angiogenic therapies.  相似文献   

7.
Polyglutamine spinocerebellar ataxias (PolyQ SCAs) are a group of 6 rare autosomal dominant diseases, which arise from an abnormal CAG repeat expansion in the coding region of their causative gene. These neurodegenerative ataxic disorders are characterized by progressive cerebellar degeneration, which translates into progressive ataxia, the main clinical feature, often accompanied by oculomotor deficits and dysarthria. Currently, PolyQ SCAs treatment is limited only to symptomatic mitigation, and no therapy is available to stop or delay the disease progression, which culminates with death. Over the last years, many promising gene therapy approaches were investigated in preclinical studies and could lead to a future treatment to stop or delay the disease development. Here, we summed up the most promising of these therapies, categorizing them in gene augmentation therapy, gene silencing strategies, and gene edition approaches. While several of the reviewed strategies are promising, there is still a gap from the preclinical results obtained and their translation to clinical studies. However, there is an increase in the number of approved gene therapies, as well as a constant development in their safety and efficacy profiles. Thus, it is expected that in a near future some of the promising strategies reviewed here could be tested in a clinical setting and if successful provide hope for SCAs patients.  相似文献   

8.
Duchenne muscular dystrophy (DMD) is the most common and cureless muscle pediatric genetic disease, which is caused by the lack or the drastically reduced expression of dystrophin. Experimental therapeutic approaches for DMD have been mainly focused in recent years on attempts to restore the expression of dystrophin. While significant progress was achieved, the therapeutic benefit of treated patients is still unsatisfactory. Efficiency in gene therapy for DMD is hampered not only by incompletely resolved technical issues, but likely also due to the progressive nature of DMD. It is indeed suspected that some of the secondary pathologies, which are evolving over time in DMD patients, are not fully corrected by the restoration of dystrophin expression. We recently identified perturbations of the mevalonate pathway and of cholesterol metabolism in DMD patients. Taking advantage of the mdx model for DMD, we then demonstrated that some of these perturbations are improved by treatment with the cholesterol-lowering drug, simvastatin. In the present investigation, we tested whether the combination of the restoration of dystrophin expression with simvastatin treatment could have an additive beneficial effect in the mdx model. We confirmed the positive effects of microdystrophin, and of simvastatin, when administrated separately, but detected no additive effect by their combination. Thus, the present study does not support an additive beneficial effect by combining dystrophin restoration with a metabolic normalization by simvastatin.  相似文献   

9.
Bacteriophages have long been considered only as infectious agents that affect bacterial hosts. However, recent studies provide compelling evidence that these viruses are able to successfully interact with eukaryotic cells at the levels of the binding, entry and expression of their own genes. Currently, bacteriophages are widely used in various areas of biotechnology and medicine, but the most intriguing of them is cancer therapy. There are increasing studies confirming the efficacy and safety of using phage-based vectors as a systemic delivery vehicle of therapeutic genes and drugs in cancer therapy. Engineered bacteriophages, as well as eukaryotic viruses, demonstrate a much greater efficiency of transgene delivery and expression in cancer cells compared to non-viral gene transfer methods. At the same time, phage-based vectors, in contrast to eukaryotic viruses-based vectors, have no natural tropism to mammalian cells and, as a result, provide more selective delivery of therapeutic cargos to target cells. Moreover, numerous data indicate the presence of more complex molecular mechanisms of interaction between bacteriophages and eukaryotic cells, the further study of which is necessary both for the development of gene therapy methods and for understanding the cancer nature. In this review, we summarize the key results of research into aspects of phage–eukaryotic cell interaction and, in particular, the use of phage-based vectors for highly selective and effective systemic cancer gene therapy.  相似文献   

10.
In recent years, enzymes have risen as promising therapeutic tools for different pathologies, from metabolic deficiencies, such as fibrosis conditions, ocular pathologies or joint problems, to cancer or cardiovascular diseases. Treatments based on the catalytic activity of enzymes are able to convert a wide range of target molecules to restore the correct physiological metabolism. These treatments present several advantages compared to established therapeutic approaches thanks to their affinity and specificity properties. However, enzymes present some challenges, such as short in vivo half-life, lack of targeted action and, in particular, patient immune system reaction against the enzyme. For this reason, it is important to monitor serum immune response during treatment. This can be achieved by conventional techniques (ELISA) but also by new promising tools such as microarrays. These assays have gained popularity due to their high-throughput analysis capacity, their simplicity, and their potential to monitor the immune response of patients during enzyme therapies. In this growing field, research is still ongoing to solve current health problems such as COVID-19. Currently, promising therapeutic alternatives using the angiotensin-converting enzyme 2 (ACE2) are being studied to treat COVID-19.  相似文献   

11.
Mutations in genes such as transglutaminase-1 (TGM1), which are responsible for the formation and normal functioning of a lipid barrier, lead to the development of autosomal recessive congenital ichthyosis (ARCI). ARCIs are characterized by varying degrees of hyperkeratosis and the presence of scales on the body surface since birth. The quality of life of patients is often significantly affected, and in order to alleviate the manifestations of the disease, symptomatic therapy with moisturizers, keratolytics, retinoids and other cosmetic substances is often used to improve the condition of the patients’ skin. Graft transplantation is commonly used to correct defects of the eye. However, these approaches offer symptomatic treatment that does not restore the lost protein function or provide a long-term skin barrier. Gene and cell therapies are evolving as promising therapy for ARCIs that can correct the functional activity of altered proteins. However, these approaches are still at an early stage of development. This review discusses current studies of gene and cell therapy approaches for various types of ichthyosis and their further prospects for patient treatment.  相似文献   

12.
In recent years, advances in drug therapy for head and neck squamous cell carcinoma (HNSCC) have progressed rapidly. In addition to cytotoxic anti-cancer agents such as platinum-based drug (cisplatin and carboplatin) and taxane-based drugs (docetaxel and paclitaxel), epidermal growth factor receptor-tyrosine kinase inhibitors (cetuximab) and immune checkpoint inhibitors such as anti-programmed cell death-1 (PD-1) antibodies (nivolumab and pembrolizumab) have come to be used. The importance of anti-cancer drug therapy is increasing year by year. Therefore, we summarize clinical trials of molecular targeted therapy and biomarkers in HNSCC from previous studies. Here we show the current trends and future prospects of molecular targeted therapy in HNSCC.  相似文献   

13.
Mucopolysaccharidosis type II (MPS II) is a lysosomal storage disorder based on a mutation in the IDS gene that encodes iduronate 2-sulphatase. As a result, there is an accumulation of glycosaminoglycans—heparan sulphate and dermatan sulphate—in almost all body tissues, which leads to their dysfunction. Currently, the primary treatment is enzyme replacement therapy, which improves the course of the disease by reducing somatic symptoms, including hepatomegaly and splenomegaly. The enzyme, however, does not cross the blood–brain barrier, and no improvement in the function of the central nervous system has been observed in patients with the severe form of the disease. An alternative method of treatment that solves typical problems of enzyme replacement therapy is gene therapy, i.e., delivery of the correct gene to target cells through an appropriate vector. Much progress has been made in applying gene therapy for MPS II, from cellular models to human clinical trials. In this article, we briefly present the history and basics of gene therapy and discuss the current state of knowledge about the methods of this therapy in mucopolysaccharidosis type II.  相似文献   

14.
Two-thirds of differentiated thyroid cancer (DTC) patients with distant metastases would be classified as radioactive iodine-refractory (RAIR-DTC), evolving into a poor outcome. Recent advances underlying DTC molecular mechanisms have shifted the therapy focus from the standard approach to targeting specific genetic dysregulations. Lenvatinib and sorafenib are first-line, multitargeted tyrosine kinase inhibitors (TKIs) approved to treat advanced, progressive RAIR-DTC. However, other anti-angiogenic drugs, including single targeted TKIs, are currently being evaluated as alternative or salvage therapy after the failure of first-line TKIs. Combinatorial therapy of mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) signalling cascade inhibitors has become a highly advocated strategy to improve the low efficiency of the single agent treatment. Recent studies pointed out targetable alternative pathways to overcome the resistance to MAPK and PI3K pathways’ inhibitors. Because radioiodine resistance originates in DTC loss of differentiation, redifferentiation therapies are currently being explored for efficacy. The present review will summarize the conventional management of DTC, the first-line and alternative TKIs in RAIR-DTC, and the approaches that seek to overcome the resistance to MAPK and PI3K pathways’ inhibitors. We also aim to emphasize the latest achievements in the research of redifferentiation therapy, immunotherapy, and agents targeting gene rearrangements in advanced DTC.  相似文献   

15.
Chitosan is widely used in molecular imprinting technology (MIT) as a functional monomer or supporting matrix because of its low cost and high contents of amino and hydroxyl functional groups. The various excellent properties of chitosan, which include nontoxicity, biodegradability, biocompatibility, and attractive physical and mechanical performances, make chitosan a promising alternative to conventional functional monomers. Recently, chitosan molecularly-imprinted polymers have gained considerable attention and showed significant potential in many fields, such as curbing environmental pollution, medicine, protein separation and identification, and chiral-compound separation. These extensive applications are due to the polymers’ desired selectivity, physical robustness, and thermal stability, as well as their low cost and easy preparation. Cross-linkers, which fix the functional groups of chitosan around imprinted molecules, play an important role in chitosan molecularly-imprinted polymers. This review summarizes the important cross-linkers of chitosan molecularly-imprinted polymers and illustrates the cross-linking mechanism of chitosan and cross-linkers based on the two glucosamine units. Finally, some significant attempts to further develop the application of chitosan in MIT are proposed.  相似文献   

16.
Precise editing of the genome of a living body is a goal pursued by scientists in many fields. In recent years, CRISPR (clustered regularly interspaced short palindromic repeat)/Cas (CRISPR-associated) genome-editing systems have become a revolutionary toolbox for gene editing across various species. However, the low transfection efficiency of the CRISPR/Cas9 system to mammalian cells in vitro and in vivo is a big obstacle hindering wide and deep application. In this review, recently developed delivery strategies for various CRISPR/Cas9 formulations and their applications in treating gene-related diseases are briefly summarized. This review should inspire others to explore more efficient strategies for CRISPR system delivery and gene therapy.  相似文献   

17.
对克服妨碍含碳浇注料的发展及应用的主要技术难题所采取的措施进行了讨论。碳的可润湿性和分散性可通过涂覆材料来加以改进,诸如:碳化物(SiC)和氧化物(Al2O3、TiO2、SiO2、MgO、ZrO2)或形成微粒/小球粒。无裂纹致密涂覆层不仅改进了碳的可润湿性和分散性,还提高了抗氧化能力。致密的微粒或小球粒可以使基质中的碳达到均匀分布,同时获得满意的机械强度和抗侵蚀性。涂覆技术也已经用来改进铝质抗氧化剂的抗水化性,但在这一领域还需进行详细研究。目前使用的结合剂系统主要基于超细硅烟和水合氧化铝,因为它们在浇注料中不形成低熔点相。在研究现存涂覆技术和微粒/小球粒制备技术的同时,还将继续探寻新的加碳方法,并开始研究浇注方式、干燥和加热制度。  相似文献   

18.
19.
The need for long-lasting and transformative therapies for mucopolysaccharidoses (MPS) cannot be understated. Currently, many forms of MPS lack a specific treatment and in other cases available therapies, such as enzyme replacement therapy (ERT), do not reach important areas such as the central nervous system (CNS). The advent of newborn screening procedures represents a major step forward in early identification and treatment of individuals with MPS. However, the treatment of brain disease in neuronopathic MPS has been a major challenge to date, mainly because the blood brain barrier (BBB) prevents penetration of the brain by large molecules, including enzymes. Over the last years several novel experimental therapies for neuronopathic MPS have been investigated. Gene therapy and gene editing constitute potentially curative treatments. However, despite recent progress in the field, several considerations should be taken into account. This review focuses on the state of the art of in vivo and ex vivo gene therapy-based approaches targeting the CNS in neuronopathic MPS, discusses clinical trials conducted to date, and provides a vision for the future implications of these therapies for the medical community. Recent advances in the field, as well as limitations relating to efficacy, potential toxicity, and immunogenicity, are also discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号