首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 250 毫秒
1.
童宇轩  金超  李灿 《江苏电器》2023,(11):26-32
针对风电功率存在间歇性、非线性和波动性而难以准确预测的问题,提出一种遵循“序列分解-网络预测-序列重构”的风电功率预测模型。针对风电场集群中的不同风电机组出力特性曲线,使用迭代自组织数据分析聚类算法(ISODATA)聚类得到典型出力曲线;利用自适应噪声完全集成经验模态分解(CEEMDAN)算法对聚类得到的原始风电序列数据进行模态分解,减少数据波动所带来的预测误差;建立各模态分量的双向长短期记忆网络(BiLSTM)预测模型,并使用改进麻雀搜索算法(ISSA)优化网络参数,再将各模态分量的预测结果叠加得到风电功率的最终预测结果。算例结果表明,所提预测模型的预测精度相比其他对比模型更高,且有着更好的泛化能力。  相似文献   

2.
较高的随机波动性使得风电功率的预测十分困难。为改善风电功率预测的效果,建立了一种基于变分模态分解(variational mode decomposition,VMD)、改进局部自注意力机制(Improved Local Self-Attention,ILSA)和门控循环单元网络(gated recurrent unit,GRU)的短期风电功率预测方法。使用VMD分解将原始风电功率序列分解为中心频率不一的子模态;对各子模态的中心频率分别建立具有不同高斯偏置优化窗口大小的ILSA模型,并改进其注意力分数公式以更有效地提取信息;采用GRU模型进行风电功率预测,并对各预测序列进行重组,得到最终的预测结果。实验结果表明,相比于各传统模型,所提改进方法能有效提高风电功率预测精度,且对于低频分量有更高的拟合度。  相似文献   

3.
准确预测风电功率对风电规模化并网至关重要。为了更精确的对风电功率进行预测,提出一种基于可变模式分解(Variational Mode Decomposition,VMD)-样本熵(Sample Entropy,SE)和改进粒子群算法(Improved Particle Swarm Optimization,IPSO)优化贝叶斯神经网络(Bayesian Neural Network,BNN)的超短期风电功率组合预测模型。首先采用VMD-SE将原始风电功率时间序列分解为一系列不同带宽的模式分量以降低其非线性,然后对全部分量分别建立贝叶斯神经网络模型进行预测,并采用IPSO对神经网络的权值和阈值进行寻优,以求获得最佳的预测效果。实验结果表明,基于VMD-SE的预测模型较采用其他常规分解方式时预测精度明显提高,所提组合预测模型具有较高的预测精度。  相似文献   

4.
《电网技术》2021,45(3):855-862,中插2-中插3
为提高风电功率预测的精度,提出了一种基于互补集合经验模态分解(complementaryensembleempiricalmode decomposition,CEEMD)、缎蓝园丁鸟优化算法(satinbower birdoptimizationalgorithm,SBO)及最小二乘支持向量回归(leastsquaressupportvectorregression,LSSVR)模型的超短期风电功率组合预测方法。针对风电序列的随机波动性,采用CEEMD对风电功率序列进行分解,将分解得到的不同特征尺度的各分量作为LSSVR模型的训练输入量。引入SBO算法对LSSVR的正则化参数与核函数宽度进行优化,建立各分量的预测模型,将各分量的预测输出值叠加得到最终的风电功率预测值。所提CEEMD-SBO-LSSVR组合预测方法不仅有效降低了预测的复杂度,而且保证原始风电序列经模态分解处理后具有小的重构误差。仿真结果表明,与其他预测模型相比,所提方法具有较高的超短期风电功率预测精度。  相似文献   

5.
为解决风速不确定性和波动性造成风电功率预测精度不高的问题,提出一种基于变分模态分解(VMD)、改进麻雀搜索算法(ISSA)和门控循环神经网络(GRU)的VMD-ISSA-GRU组合模型。首先,利用中心频率法确定采用VMD分解后的模态分量个数,这样有效避免了过分解或者分解不充分。其次引入混沌映射、非线性递减权重以及一个突变策略来改进麻雀搜索算法,用于优化门控循环神经网络,然后对分解得到的各个子序列建立ISSA-GRU预测模型,最后叠加每个子序列的预测值得到最终的预测值。将该模型用于实际风电功率预测,实验结果表明:VMD-ISSA-GRU组合模型的平均绝对误差、平均绝对百分比误差、均方根误差分别为1.211 8 MW、1.890 0及1.591 6 MW;相较于传统的GRU、长短时记忆(LSTM)神经网络、BiLSTM(Bi-directional LSTM)神经网络模型以及其他组合模型在预测精度上都有明显的提升,能很好地解决风电功率预测精度不高的问题  相似文献   

6.
针对风电功率的高随机和强波动性,提出一种基于EMD-SA-SVR的风电功率超短期预测方法。采用经验模态分解(Empirical Mode Decomposition, EMD)提取风电功率序列的不同特征。将原始序列分解为多个更具规律的模态,针对每个模态序列建立各自的预测模型,以消除不同特征之间的相互影响。鉴于支持向量回归(Support Vector Regression, SVR)好的泛化能力,研究建立基于SVR的各模态预测模型。进一步采用模拟退火(Simulated Annealing,SA)算法对SVR参数进行优化以解决模型选择的多极值复杂非线性问题,获得各模态分量的最优模型,进而汇总各模态分量的结果得到风电功率预测值。在某风电场历史数据上的对比分析表明,EMD-SA-SVR模型可以有效提高风电功率超短期预测精度。  相似文献   

7.
针对风电场日前风电出力预测问题,应用一种基于经验模态分解法优化支持向量机的算法的短期风电功率组合预测方法。首先采用经验模态分解法将历史风电功率数据分解为一系列相对平稳的分量序列,以减少不同特征信息间的相互影响,然后采用优化的支持向量机法对所分解的各分量序列分别建立预测模型,针对各分量自身特点选用不同的核函数和参数以取得单个分量的最佳预测精度,最后把各个分量的预测结果叠加,形成风电功率的最终预测值。算例表明,与其他单一预测方法相比,本文使用的组合算法预测精度更高。  相似文献   

8.
风电功率的准确预测是减少风电接入电网的不良影响的必要前提。然而风电功率序列在时间上和空间上表现出非平稳性使其难以准确预测,因此提出一种基于集合经验模态分解(EEMD)和深浅层学习组合的短期风电功率组合预测方法,其中深度学习使用稀疏自编码器(SAE)而浅层学习则使用BP神经网络,从而建立EEMD-SAE-BP预测模型。该模型先用EEMD将风电功率原始序列分解为一系列按不同时间尺度分布的分量;然后针对分量中的高频分量建立SAE预测模型,对低频分量则用BP网络建立预测模型;最后将各子序列预测结果叠加得到最终的风电功率预测结果。通过比较几种预测模型的结果,本文提出的预测模型能有效地提高预测精度,有较高的实用价值。  相似文献   

9.
为提升风电功率预测精度,提出基于二层分解技术和粒子群优化长短期记忆(PSO-LSTM)神经网络组合的超短期风电功率预测模型。对风电功率原始数据,采用快速集合经验模态分解(FEEMD)方法将其分解为一系列本征模态函数(IMF)分量和余项,针对高频分量采用变分模态分解(VMD)进行二层分解。运用样本熵来解决分量个数过多、计算量繁杂的问题。通过偏自相关函数(PACF)筛选出与预测值关联程度高的元素确定输入维数。最后,选用PSO来优化LSTM相关参数建立预测模型并叠加获得最终值。试验结果表明,该组合模型有效提高了预测精度。  相似文献   

10.
针对时间序列规律难以捕捉且具有高度非平稳性特征导致的预测精度较低问题,提出了一种基于二次分解和注意力机制优化门控循环单元(GRU-attention)的时间序列预测模型。首先利用完全集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise, CEEMDAN)将时间序列分解为若干个特征互异的模态分量,并依据样本熵量化各分量复杂度。其次采用变分模态分解(variational modal decomposition, VMD)弱化高熵值分量的非平稳性特征。接着使用注意力机制优化GRU预测模型。最后对各分量建立GRU-attention模型进行预测,将各分量预测结果叠加获得最终结果。通过实验分析证明,所提出的模型与其他模型相比能够较好的捕捉序列的复杂规律、降低序列的非平稳性并且具有较高的预测性能,其平均绝对百分比误差达到了2.9%,决定系数达到了0.891。  相似文献   

11.
考虑到风速时间序列非平稳特性和时序关联难以建模的问题,提出一种基于变分模态分解和深度门控循环网络的风速短期预测模型。该模型首先使用变分模态分解非递归地将原始风速序列分解为预先设定层数的子分量,以期降低原始序列的不平稳度,使用深度门控网络分别对各子分量建模预测,最后叠加各分量的预测结果,得到风速的预测结果。实例研究表明所提模型能够有效地跟踪风速的变化,具有较高的短期预测精度。  相似文献   

12.
风电场的风速预测对电力系统的稳定及安全运行有着重大的影响.考虑到风速序列具有间歇性和随机性等特征,提出一种基于参数优化的变分模态分解及极限学习机的组合模型,将其用于超短期风速预测.首先,采用变分模态分解算法将风速序列分解为一系列的平稳分量.以正交性为适应度函数,利用网格优化算法搜索变分模态分解的关键参数值——分解层数和...  相似文献   

13.
毛元  冯洋  严岩  陈磊  钱勇 《宁夏电力》2024,(2):1-5,26
针对风电场功率不稳定特性引起风电功率预测精度不高的问题,提出1种基于EEMD-PSO-ELM的超短期风电功率预测方法。首先,采用集合经验模态分解(ensemble empirical mode decomposition,EEMD)将风电功率序列分解为若干个模态,从而避免了模态混叠;其次,利用相空间重构对分解得到的模态计算Hurst指数,并依据Hurst指数得到最优子序列;最后,采用粒子群算法(particle swarm optimization,PSO)-极限学习机(extreme learning machine,ELM)模型对最优子序列风电功率进行预测。以某风电场为例,采用预测模型进行分析,实验结果表明EEMD-PSO-ELM预测模型的风电功率预测精度更高。  相似文献   

14.
基于特征挖掘的ARIMA-GRU短期电力负荷预测   总被引:2,自引:0,他引:2  
针对短期电力负荷随机性较强、预测精度较低的问题,提出了一种基于混沌理论、变分模态分解VMD(variational modal decomposition)、整合移动平均自回归ARIMA(autoregressive integrated moving average)模型和门控循环单元GRU(gated recurr...  相似文献   

15.
针对电力负荷序列不平稳、随机性强,直接输入模型会导致拟合效果差、预测精度低等问题,本文提出了一种基于添加互补白噪声的互补集合经验模态分解(complementary ensemble empirical mode decomposition, CEEMD)以及门控循环单元神经网络(gated recurrent unit neural network, GRU)融合的预测方法。首先,针对传统经验模态分解(empirical mode decomposition, EMD)分解方法处理干扰信号大的序列时,存在的模态混叠问题,提出了CEEMD分解方法,加入互补白噪声,将原始序列分解成不同尺度的子序列,随后使用GRU神经网络,并优化网络超参数,从而获得最好的预测结果。通过实验证明,该方法重构误差小,预测效果好。  相似文献   

16.
为降低短期负荷序列的非线性以提升预测精度,提出一种基于多阶段优化的变分模态分解(variational mode decomposition, VMD)和粒子群算法优化支持向量回归(particle swarm optimization support vector regression, PSO-SVR)的短期电力负荷预测模型。第1阶段采用VMD优化和预处理原始负荷序列,分解获得多个较为平稳的模态分量。第2阶段利用相空间重构优化重组各序列分量,并针对各分量分别建立支持向量回归(support vector regression,SVR)预测模型。第3阶段将粒子群算法(particle swarm optimization,PSO)用于优化SVR模型内部参数,便于更好地进行训练和预测。最后累加所有序列的预测值,实现短期电力负荷预测。研究结果表明:所提方法可以取得更高的预测精度。  相似文献   

17.
为提高风电出力的预测精度,提出一种基于Bayes优化的长短期记忆人工神经网络(long-short term memory, LSTM)的预测模型。首先,利用经验模态分解对风电历史出力序列进行分解,并对各分量及原始数据分别提取8个统计特征量,与预测前6个时刻出力值共同组成预测特征集。然后,采用绳索算法(least absolute shrinkage and selection operator, LASSO)从预测特征集中提取具有统计意义的特征子集,作为预测模型的输入。最后,提出基于Bayes超参数寻优的LSTM网络优化方法,以提高预测精度。选取湖北某市风电出力历史数据进行预测实验,结果表明:相较于BP神经网络、SVM、RBF网络、GRNN网络等预测模型,所提模型预测精度较高,特征提取方法较为合理。  相似文献   

18.
为降低短期负荷序列的非线性以提升预测精度,提出一种基于多阶段优化的变分模态分解(variational mode decomposition, VMD)和粒子群算法优化支持向量回归(particle swarm optimization support vector regression, PSO-SVR)的短期电力负荷预测模型。第1阶段采用VMD优化和预处理原始负荷序列,分解获得多个较为平稳的模态分量。第2阶段利用相空间重构优化重组各序列分量,并针对各分量分别建立支持向量回归(support vector regression,SVR)预测模型。第3阶段将粒子群算法(particle swarm optimization,PSO)用于优化SVR模型内部参数,便于更好地进行训练和预测。最后累加所有序列的预测值,实现短期电力负荷预测。研究结果表明:所提方法可以取得更高的预测精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号