首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High density of defects at interface severely affects the performance of perovskite solar cells (PSCs). Herein, cobalt (II) hexafluoro-2,4-pentanedionat (CoFAc), a hinge-type fluorine-rich complex, is introduced onto the surface of formamidinium cesium lead iodide (FACsPbI3) film to address the issues of perovskite/Spiro-OMeTAD interface. The existence of CoFAc passivates both organic cation and halide anion vacancies by establishing powerful hydrogen bonds with HC(NH2)2+ (FA+) and strong ionic bonds with Pb2+ in perovskite films. In addition, CoFAc serves as a connecting link to enhance interfacial hole-transport kinetics via interacting with Spiro-OMeTAD. Consequently, FACsPbI3 PSCs with CoFAc modification display a champion power conversion efficiency (PCE) of 24.64% with a charming open-circuit voltage (VOC) of 1.191 V, which is the record VOC among all the reported organic-inorganic hybrid PSCs with TiO2 as electron transport layer. Furthermore, CoFAc-modified devices exhibit an outstanding long-term stability, which can maintain 95% of their initial PCEs after exposure to ambient atmosphere for 1500 h without any encapsulation.  相似文献   

2.
《Organic Electronics》2014,15(8):1745-1752
The performance of both inverted and conventional polymer solar cells (PSCs) were examined with a low-temperature, solution-processed synthesized TiO2 nanoparticles (TiO2 NPs) as the electron extraction layer. The performance of inverted PSCs based on P3HT:PCBM bulk-heterojunction with a TiO2 NPs layer was dramatically improved and the highest power conversion efficiency (PCE) of 4.56% was achieved via 24 h exposure in air, which is one of the highest PCEs for P3HT:PCBM bulk-heterojunction PSCs using TiO2 as electron extraction layer. Meanwhile, the performance of inverted PSCs was superior to regular PSCs. Mott-Schottky capacitance analysis was carried out for both inverted and regular PSCs to obtain the built-in potential, the depletion width, as well as the doping level of the active layer, which all support the performance improvement of PSCs devices with inverted structure. In addition, inverted PSCs show excellent stability in air without encapsulation. The PCE can retain 87% of its original values after 400 h exposure in air, which is much better than that of regular PSCs. The results indicate that solution-processed TiO2 NPs shows great potential applications in the fabrication of highly efficient and stable inverted PSCs as well as large-area, flexible printed PSCs.  相似文献   

3.
3D organic–inorganic lead halide perovskites have shown great potential in efficient photovoltaic devices. However, the low stability of the 3D perovskite layer and random arrangement of the perovskite crystals hinder its commercialization road. Herein, a highly oriented 2D@3D ((AVA)2PbI4@MAPbI3) perovskite structure combining the advantages of both 2D and 3D perovskite is fabricated through an in situ route. The highest power conversion efficiency (PCE) of 18.0% is observed from a 2D@3D perovskite solar cell (PSC), and it also shows significantly enhanced device stability under both inert (90% of initial PCE for 32 d) and ambient conditions (72% of initial PCE for 20 d) without encapsulation. The high efficiency of 18.0% and nearly twofold improvement of device stability in ambient compared with pure 3D PSCs confirm that such 2D@3D perovskite structure is an effective strategy for high performance and increasing stability and thus will enable the timely commercialization of PSCs.  相似文献   

4.
Introducing excess PbI2 has proven to be an effective in situ passivation strategy for enhancing efficiency of perovskite solar cells (PSCs). Nevertheless, the photoinstability and hysteresis are still tough issues owing to the photolysis nature of PbI2. Moreover, the humidity-related degradation of perovskite films is also a difficult territory to cover in such an in situ passivation strategy. Herein, a synergistic strategy is reported via initiatively inducing vertical graded PbI2 distribution (GPD) in the whole perovskite film and capping a cis-Ru(H2dcbpy)(dnbpy)(NCS)2 (Z907) internal encapsulation (IE) layer on the surface to ameliorate the above issues. The GPD design can enhance luminescence, prolong carrier lifetimes, ascertaining the improvement of efficiency and elimination of photoinstability in the PSCs. Besides, the introduced IE layer not only can promote the moisture and thermal resistance, but also inhibit Pb leakage and ion migration in the PSCs. Through the synergetic regulations, the resultant PSCs exhibit an impressive open circuit voltage (VOC) of 1.253 V, fill factor of 81.25%, and power conversion efficiency (PCE) of 24.28%. Moreover, the PSCs maintain 91% of its initial PCE at relative humidity of 85% after 500 h aging and 94% under continuous heating at 85 °C after 750 h aging.  相似文献   

5.
Perovskite solar cells (PSCs) based on organic monovalent cation (methylammonium or formamidinium) have shown excellent optoelectronic properties with high efficiencies above 22%, threatening the status of silicon solar cells. However, critical issues of long‐term stability have to be solved for commercialization. The severe weakness of the state‐of‐the‐art PSCs against moisture originates mainly from the hygroscopic organic cations. Here, rubidium (Rb) is suggested as a promising candidate for an inorganic–organic mixed cation system to enhance moisture‐tolerance and photovoltaic performances of formamidinium lead iodide (FAPbI3). Partial incorporation of Rb in FAPbI3 tunes the tolerance factor and stabilizes the photoactive perovskite structure. Phase conversion from hexagonal yellow FAPbI3 to trigonal black FAPbI3 becomes favored when Rb is introduced. The authors find that the absorbance and fluorescence lifetime of 5% Rb‐incorporated FAPbI3 (Rb0.05FA0.95PbI3) are enhanced than bare FAPbI3. Rb0.05FA0.95PbI3‐based PSCs exhibit a best power conversion efficiency of 17.16%, which is much higher than that of the FAPbI3 device (13.56%). Moreover, it is demonstrated that the Rb0.05FA0.95PbI3 film shows superior stability against high humidity (85%) and the full device made with the mixed perovskite exhibits remarkable long‐term stability under ambient condition without encapsulation, retaining the high performance for 1000 h.  相似文献   

6.
Perovskite solar cells (PSCs) are one of the most promising solar energy conversion technologies owing to their rapidly developing power conversion efficiency (PCE). Low‐temperature solution processing of the perovskite layer enables the fabrication of flexible devices. However, their application has been greatly hindered due to the lack of strategies to fabricate high‐quality electron transport layers (ETLs) at the low temperatures (≈100 °C) that most flexible plastic substrates can withstand, leading to poor performances for flexible PSCs. In this work, through combining the spin‐coating process with a hydrothermal treatment method, ligand‐free and highly crystalline SnO2 ETLs are successfully fabricated at low temperature. The flexible PSCs based on this SnO2 ETL exhibit an excellent PCE of 18.1% (certified 17.3%). The flexible PSCs maintained 85% of the initial PCE after 1000 bending cycles and over 90% of the initial PCE after being stored in ambient air for 30 days without encapsulation. The investigation reveals that hydrothermal treatment not only promotes the complete removal of organic surfactants coated onto the surface of the SnO2 nanoparticles by hot water vapor but also enhances crystallization through the high vapor pressure of water, leading to the formation of high‐quality SnO2 ETLs.  相似文献   

7.
Compared with silicon‐based solar cells, organic–inorganic hybrid perovskite solar cells (PSCs) possess a distinct advantage, i.e., its application in the flexible field. However, the efficiency of the flexible device is still lower than that of the rigid one. First, it is found that the dense formamidinium (FA)‐based perovskite film can be obtained with the help of N‐methyl‐2‐pyrrolidone (NMP) via low pressure‐assisted method. In addition, CH3NH3Cl (MACl) as the additive can preferentially form MAPbCl3?xIx perovskite seeds to induce perovskite phase transition and crystal growth. Finally, by using FAI·PbI2·NMP+x%MACl as the precursor, i.e., ligand and additive synergetic process, a FA‐based perovskite film with a large grain size, high crystallinity, and low trap density is obtained on a flexible substrate under ambient conditions due to the synergetic effect, e.g., MACl can enhance the crystallization of the intermediate phase of FAI·PbI2·NMP. As a result, a record efficiency of 19.38% in flexible planar PSCs is achieved, and it can retain about 89% of its initial power conversion efficiency (PCE) after 230 days without encapsulation under ambient conditions. The PCE retains 92% of the initial value after 500 bending cycles with a bending radii of 10 mm. The results show a robust way to fabricate highly efficient flexible PSCs.  相似文献   

8.
1D perovskite materials are of significant interest to build a new class of nanostructures for electronic and optoelectronic applications. However, the study of colloidal perovskite nanowires (PNWs) lags far behind those of other established perovskite materials such as perovskite quantum dots and perovskite thin films. Herein, a dual-phase passivation strategy to synthesize all-inorganic PNWs with minimized surface defects is reported. The local phase transition from CsPbBr3 to CsPb2Br5 in PNWs increases the photoluminescence quantum yield, carrier lifetime, and water-resistivity, owing to the energetic and chemical passivation effect. In addition, these dual-phase PNWs are employed as an interfacial layer in perovskite solar cells (PSCs). The enhanced surface passivation results in an efficient carrier transfer in PSCs, which is a critical enabler to increase the power conversion efficiency (PCE) to 22.87%, while the device without PNWs exhibits a PCE of 20.74%. The proposed strategy provides a surface passivation platform in 1D perovskites, which can lead to the development of novel nanostructures for future optoelectronic devices.  相似文献   

9.
Polymer solar cells (PSCs) with poly(3‐hexylthiophene) (P3HT) as a donor, an indene‐C70 bisadduct (IC70BA) as an acceptor, a layer of indium tin oxide modified by MoO3 as a positive electrode, and Ca/Al as a negative electrode are presented. The photovoltaic performance of the PSCs was optimized by controlling spin‐coating time (solvent annealing time) and thermal annealing, and the effect of the spin‐coating times on absorption spectra, X‐ray diffraction patterns, and transmission electron microscopy images of P3HT/IC70BA blend films were systematically investigated. Optimized PSCs were obtained from P3HT/IC70BA (1:1, w/w), which exhibited a high power conversion efficiency of 6.68%. The excellent performance of the PSCs is attributed to the higher crystallinity of P3HT and better a donor–acceptor interpenetrating network of the active layer prepared under the optimized conditions. In addition, PSCs with a poly(3,4‐ethylenedioxy‐thiophene):poly(styrenesulfonate) (PEDOT:PSS) buffer layer under the same optimized conditions showed a PCE of 6.20%. The results indicate that the MoO3 buffer layer in the PSCs based on P3HT/IC70BA is superior to that of the PEDOT:PSS buffer layer, not only showing a higher device stability but also resulting in a better photovoltaic performance of the PSCs.  相似文献   

10.
Thermal stability is a critical criterion for assessing the long-term stability of perovskite solar cells (PSCs). Here, it is shown that un-encapsulated co-evaporated MAPbI3 (TE_MAPbI3) PSCs demonstrate remarkable thermal stability even in an n-i-p structure that employs Spiro-OMeTAD as hole transport material (HTM). TE_MAPbI3 PSCs maintain over ≈95% and ≈80% of their initial power conversion efficiency (PCE) after 1000 and 3600 h respectively under continuous thermal aging at 85 °C. TE_MAPbI3 PSCs demonstrate remarkable structural robustness, absence of pinholes, or significant variation in grain sizes, and intact interfaces with the HTM, upon prolonged thermal aging. Here, the main factors driving TE_MAPbI3 stability are assessed. It is demonstrated that the excellent TE_MAPbI3 thermal stability is related to the perovskite growth process leading to a compact and almost strain-stress-free film. On the other hand, un-encapsulated PSCs with the same architecture, but incorporating solution-processed MAPbI3 or Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3 as active layers, show a complete PCE degradation after 500 h under the same thermal aging condition. These results highlight that the control of the perovskite growth process can substantially enhance the PSCs thermal stability, besides the chemical composition. The TE_MAPbI3 impressive long-term thermal stability features the potential for field-operating conditions.  相似文献   

11.
This study is on the enhancement of the efficiency of wide bandgap (FA0.8Cs0.2PbI1.8Br1.2) perovskite solar cells (PSCs) used as the top layer of the perovskite/perovskite tandem solar cell. Poly[bis(4-phenyl) (2,4,6-trimethylphenyl) amine] (PTAA) and the monomolecular layer called SAM layer are effective hole collection layers for APbI3 PSCs. However, these hole transport layers (HTL) do not give high efficiencies for the wide bandgap FA0.8Cs0.2PbI1.8Br1.2 PSCs. It is found that the surface-modified PTAA by monomolecular layer (MNL) improves the efficiency of PSCs. The improved efficiency is explained by the improved FA0.8Cs0.2PbI1.8Br1.2 film quality, decreased film distortion (low lattice disordering) and low density of the charge recombination site, and improves carrier collection by the surface modified PTAA layer. In addition, the relationship between the length of the alkyl group linking the anchor group and the carbazole group is also discussed. Finally, the wide bandgap lead PSCs (Eg = 1.77 eV) fabricated on the PTAA/monomolecular bilayer give a higher power conversion efficiency of 16.57%. Meanwhile, all-perovskite tandem solar cells with over 25% efficiency are reported by using the PTAA/monomolecular substrate.  相似文献   

12.
Perovskite solar cells (PSCs) are highly promising next‐generation photovoltaic devices because of the cheap raw materials, ideal band gap of ≈1.5 eV, broad absorption range, and high absorption coefficient. Although lead‐based inorganic‐organic PSC has achieved the highest power conversion efficiency (PCE) of 25.2%, the toxic nature of lead and poor stability strongly limits the commercialization. Lead‐free inorganic PSCs are potential alternatives to toxic and unstable organic‐inorganic PSCs. Particularly, double‐perovskite Cs2AgBiBr6‐based PSC has received interests for its all inorganic and lead‐free features. However, the PCE is limited by the inherent and extrinsic defects of Cs2AgBiBr6 films. Herein, an effective and facile strategy is reported for improving the PCE and stability by introducing an N719 dye interlayer, which plays multifunctional roles such as broadening the absorption spectrum, suppressing the charge carrier recombination, accelerating the hole extraction, and constructing an appropriate energy level alignment. Consequently, the optimizing cell delivers an outstanding PCE of 2.84%, much improved as compared with other Cs2AgBiBr6‐based PSCs reported so far in the literature. Moreover, the N719 interlayer greatly enhances the stability of PSCs under ambient conditions. This work highlights a useful strategy to boost the PCE and stability of lead‐free Cs2AgBiBr6‐based PSCs simultaneously, accelerating the commercialization of PSC technology.  相似文献   

13.
Recently, organic–inorganic hybrid perovskite materials have drawn great attention for their outstanding performance in high‐efficiency solar cells. Successful synthesis has been realized either in solution‐based chemical deposition or vapor deposition. However, conflicts have never ceased among quality control, growth rate, process complexity, and instrument requirement, which have limited their development toward real applications. In this work, the first electrochemical fabrication of perovskite toward high‐efficiency and scalable perovskite solar cells (PSCs) is established. The morphology and crystallization of the CH3NH3PbI3 film can be effectively controlled by simply modulating a few physical parameters. A detailed study on its optoelectronic properties reveals significantly improved film quality and interfacial conditions. Aided by this, the total process does not require standard annealing, which greatly reduces the total growth time from hours to minutes. Up to now, an efficiency of 15.65% has been achieved in planar PSCs under 1 sun AM 1.5 condition, with small hysteresis and efficiency loss under longtime exposure to air. Moreover, high efficiency (10.45%) can be easily attained for large cells (2 cm2). This result will hopefully facilitate research for applicable high‐efficiency PSCs and other multicomponent materials as well.  相似文献   

14.
Organo‐lead halide perovskite solar cells (PSCs) have received great attention because of their optimized optical and electrical properties for solar cell applications. Recently, a dramatic increase in the photovoltaic performance of PSCs with organic hole transport materials (HTMs) has been reported. However, as of now, future commercialization can be hampered because the stability of PSCs with organic HTM has not been guaranteed for long periods under conventional working conditions, including moist conditions. Furthermore, conventional organic HTMs are normally expensive because material synthesis and purification are complicated. It is herein reported, for the first time, octadecylamine‐capped pyrite nanoparticles (ODA‐FeS2 NPs) as a bi‐functional layer (charge extraction layer and moisture‐proof layer) for organo‐lead halide PSCs. FeS2 is a promising candidate for the HTM of PSCs because of its high conductivity and suitable energy levels for hole extraction. A bi‐functional layer based on ODA‐FeS2 NPs shows excellent hole transport ability and moisture‐proof performance. Through this approach, the best‐performing device with ODA‐FeS2 NPs‐based bi‐functional layer shows a power conversion efficiency of 12.6% and maintains stable photovoltaic performance in 50% relative humidity for 1000 h. As a result, this study has the potential to break through the barriers for the commercialization of PSCs.  相似文献   

15.
Perovskite solar cells (PSCs) may offer huge potential in photovoltaic conversion, yet their practical applications face one major obstacle: their low stability, or quick degradation of their initial efficiencies. Here, a new design scheme is presented to enhance the PSC stability by using low‐temperature hydrothermally grown hierarchical nano‐SnO2 electron transport layers (ETLs). The ETL contains a thin compact SnO2 layer underneath a mesoporous layer of SnO2 nanosheets. The mesoporous layer plays multiple roles of enhancing photon collection, preventing moisture penetration and improving the long‐term stability. Through such simple approaches, PSCs with power conversion efficiencies of ≈13% can be readily obtained, with the highest efficiency to be 16.17%. A prototypical PSC preserves 90% of its initial efficiency even after storage in air at room temperature for 130 d without encapsulation. This study demonstrates that hierarchical SnO2 is a potential ETL for fabricating low‐cost and efficient PSCs with long‐term stability.  相似文献   

16.
Formamidinium lead triiodide (FAPbI3) has been demonstrated as the most efficient perovskite system to date, due to its excellent thermal stability and an ideal bandgap approaching the Shockley-Queisser limit. Whereas, there are intrinsic quantum confinement effects in FAPbI3, which lead to unwanted non-radiative recombination. Additionally, the black α-phase of FAPbI3 is unstable under room temperature due to the significant residual tensile stress in the film. To simultaneously address the above issues, a thermally-activated delayed fluorescence polymer P1 is designed in the study to modify the FAPbI3 film. Owing to the spectral overlap between the photoluminescence of P1 and absorption of the above-bandgap quantum wells of FAPbI3, the Förster energy transfer occurs at the P1/FAPbI3 interface, which further triggers the Dexter energy transfer within FAPbI3. The exciton “recycling” can thus be realized, which reduces the non-radiative recombination losses in perovskite solar cells (PSCs). Moreover, P1 is found to introduce compressive stress into FAPbI3, which relieves the tensile stress in perovskite. Consequently, the PSCs with P1 treatment achieve an outstanding power conversion efficiency (PCE) of 23.51%. Moreover, with the alleviation of stress in the perovskite film, flexible PSCs (f-PSCs) also deliver a high PCE of 21.40%.  相似文献   

17.
This study reports a new nonfullerene electron transporting material (ETM) based on naphthalene diimide (NDI) small molecules for use in high‐performance perovskite solar cells (PSCs). These solar cells simultaneously achieve high power conversion efficiency (PCE) of over 20% and long‐term stability. New NDI‐ID (N,N′‐Bis(1‐indanyl)naphthalene‐1,4,5,8‐tetracarboxylic diimide) consisting of an N‐substituted indane group having simultaneous alicyclic and aromatic characteristics is synthesized by a low‐cost, one‐step reaction, and facile purification method. The partially flexible characteristics of an alicyclic cyclopentene group on indane groups open the possibility of low‐temperature solution processing. The conformational rigidity and aromaticity of phenyl and alicyclic groups contribute to high temporal stability by strong secondary bonds. NDI‐ID has herringbone packed semiconducting NDI cores that exhibit up to 0.2 cm2 V?1 s?1 electron mobility in field effect transistors. The inverted PSCs based on CH(NH2)2PbI3–xBrx with NDI‐ID ETM exhibit very high PCEs of up to 20.2%, which is better than that of widely used PCBM (phenyl‐C61‐butyric acid methyl ester) ETM‐based PSCs. Moreover, NDI‐ID‐based PSCs exhibit very high long‐term temporal stability, retaining 90% of the initial PCE after 500 h at 100 °C with 1 sun illumination without encapsulation. Therefore, NDI‐ID is a promising ETM for highly efficient, stable PSCs.  相似文献   

18.
Despite remarkable progress in hybrid perovskite solar cells (PSCs), the concern of toxic lead ions remains a major hurdle in the path towards PSC's commercialization; tin (Sn)-based PSCs outperform the reported Pb-free perovskites in terms of photovoltaic performance. However, it is of a particularly great challenge to develop effective passivation strategies to suppress Sn(II) induced defect densities and oxidation for attaining high-performance all-inorganic CsSnI3 PSCs. Herein, a facile yet effective thioamides passivation strategy to modulate defect state density at surfaces and grain boundaries in CsSnI3 perovskites is reported. The thiosemicarbazide (TSC) with SC N functional groups can make strong coordination interaction with charge defects, leading to enhanced electron cloud density around defects and increased vacancy formation energies. Importantly, the surface passivation can reduce the deep level trap state defect density originated from undercoordinated Sn2+ ion and Sn2+ oxidation, significantly restraining nonradiative recombination and elongating the carrier lifetime of TSC treated CsSnI3 PSCs. The surface passivated all-inorganic CsSnI3 PSCs based on an inverted configuration delivers a champion power conversion efficiency (PCE) of 8.20%, with a prolonged lifetime over 90% of initial PCE, after 500 h of continuous illumination. The present strategy sheds light on surface defect passivation for achieving highly efficient all-inorganic lead-free Sn-based PSCs.  相似文献   

19.
Narrow-bandgap mixed Pb-Sn perovskite solar cells (PSCs) have great feasibility for constructing efficient all-perovskite tandem solar cells, in combination with wide-bandgap lead halide PSCs. However, the power conversion efficiency of mixed Pb-Sn PSCs still lags behind lead-based counterparts. Here, additive engineering using ionic imidazolium tetrafluoroborate (IMBF4) is proposed, where the imidazolium (IM) cation and tetrafluoroborate (BF4) anion efficiently passivate defects at grain boundaries and improve crystallinity, simultaneously relaxing lattice strain, respectively. Defect passivation is achieved by the chemical interaction between the IM cation and the positively charged under-coordinated Pb2+ or Sn2+ ions, and lattice strain relaxation is realized by lattice expansion with the intercalation of BF4 anions into the perovskite lattice. As a result, the synergistic effects of the cation and anion in the IMBF4 additive greatly enhance the optoelectronic performance of half-mixed Pb-Sn perovskites, leading to much longer carrier lifetimes. The best-performing half-mixed Pb-Sn PSC shows an efficiency above 19% with negligible hysteresis, while retaining over 90% of its initial efficiency after 1000 h in a nitrogen-filled glovebox and showing a lifetime to 80% degradation of 53.5 h under continuous illumination.  相似文献   

20.
The photovoltaic stability of polymer solar cells (PSCs) can be greatly improved by adopting an inverted device structure. This paper reports high-performance inverted PSCs with lead monoxide (PbO)-modified indium tin oxide (ITO) as the cathodes. A thin PbO layer can effectively lower the work function of ITO from 4.5 to 3.8 eV. The optimal inverted PSCs with poly(3-hexylthiophene) (P3HT) as the donor and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) as the acceptor exhibited high photovoltaic performance: open-circuit voltage of 0.59 V, short-circuit current density of 10.8 mA cm−2, fill factor of 0.632, and power conversion efficiency of 4.00% under simulated AM1.5G illumination (100 mW cm−2). The photovoltaic efficiency is significantly higher than that of the control inverted PSCs with unmodified ITO as the cathode. It is even better than that of the control PSCs with normal architecture, which have an optimal efficiency of 3.5%. The lowering in the work function by the PbO modification is attributed to the charge transfer between PbO and ITO, as evidenced by the X-ray photoelectron spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号