首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Topoisomerase II is the cytotoxic target for a number of clinically relevant antitumor drugs. Berberrubine, a protoberberine alkaloid which exhibits antitumor activity in animal models, has been identified as a specific poison of topoisomerase II in vitro. Topoisomerase II-mediated DNA cleavage assays showed that berberrubine poisons the enzyme by stabilizing topoisomerase II-DNA cleavable complexes. Subsequent proteinase K treatments revealed that berberrubine-induced DNA cleavage was generated solely by topoisomerase II. Topoisomerase II-mediated DNA religation with elevated temperature revealed a substantial reduction in DNA cleavage induced by berberrubine, to the extent comparable to that of other prototypical topoisomerase II poison, etoposide, suggesting that DNA cleavage involves stabilization of the reversible enzyme-DNA cleavable complex. However, the step at which berberrubine induces cleavable complex may differ from that of etoposide as revealed by the difference in the formation of the intermediate product, nicked DNA. This suggests that berberrubine's primary mode of linear formation may involve trapping nicked molecules, formed at transition from linear to covalently closed circular DNA. Unwinding of the duplex DNA by berberrubine is consistent with an intercalative binding mode for this compound. In addition to the ability to induce the cleavable complex mediated with topoisomerase II, berberrubine at high concentrations was shown to specifically inhibit topoisomerase II catalytic activity. Berberrubine, however, did not inhibit topoisomerase I at concentrations up to 240 microM. Cleavage sites induced by topoisomerase II in the presence of berberrubine and etoposide were mapped in DNA. Berberrubine induces DNA cleavage in a site-specific and concentration-dependent manner. Comparison of the cleavage pattern of berberrubine with that of etoposide revealed that they share many common sites of cleavage. Taken together, these results indicate that berberrubine represents a new class of antitumor agent which exhibits the topoisomerase II poison activity as well as catalytic inhibition activity and may have a potential clinical value in cancer treatment.  相似文献   

2.
Two mutations in vaccinia virus topoisomerase I, K167D and G226N, have been characterized. SOS induction was observed in Escherichia coli expressing vaccinia topoisomerase I with either one of these mutations. The mutant enzymes were purified to homogeneity and compared with the wild type enzyme for relaxation activity and the partial activities of substrate binding, site-specific DNA cleavage and DNA religation to determine the mechanism of SOS induction. The K167D mutant enzyme had reduced binding affinity for the DNA substrate with a Kapp that was 10-fold higher than wild type. Nevertheless, in reactions with high enzyme concentration, its substrate cleavage activity was 90% that of wild type. The G226N mutant enzyme had virtually wild type binding and cleavage activities. However, intermolecular religation by these two mutants were observed to be significantly reduced. The cleavage complexes formed with the K167D and G226N mutants were more stable to high salt than the wild type cleavable complex. We propose that these mutants in vivo induce the SOS response in E. coli due to the shift of topoisomerase cleavage-religation equilibrium towards cleavage and increased stability of the cleavage complex. The mutation thus has a similar effect as the topoisomerase-targeting inhibitors that turn topoisomerases into DNA damaging agents.  相似文献   

3.
Previously we reported [20] that there is no correlation between the cytotoxic activity of four new structural analogs of the antitumor DNA intercalator 3-nitrobenzothiazolo[3,2-a]quinolinium chloride (NBQ-2) and their interaction with DNA. In the present study, we present evidence suggesting that the molecular basis for the anti-proliferative activity of these drugs is the inhibition of topoisomerase II. The NBQ-2 derivatives inhibited the relaxation of supercoiled DNA plasmid pRYG mediated by purified human topoisomerase II. Inhibition of the decatenation of kinetoplast DNA mediated by partially purified topoisomerase II extracted from the human histiocytic lymphoma U937 (a cell line previously shown to be sensitive to the drugs) was also caused by these drugs. The potency of the benzazolo[3,2-a]quinolinium drugs against topoisomerase II in vitro was the following: 7-(1-propenyl)-3-nitrobenzimidazolo[3,2-a]quinolinium chloride (NBQ-59) > 4-chlorobenzothiazolo[3,2-a]quinolinium chloride (NBQ-76) > 7-ethyl-3-nitrobenzimidazolo[3,2-a]quinolinium chloride (NBQ-48) > 7-benzyl-3-nitrobenzimidazolol[3,2-a]quinolinium chloride (NBQ-38). This rank of potency for topoisomerase II inhibition correlated very well with the cytotoxicity elicited by these drugs. Furthermore, significant levels of topoisomerase II/DNA cleavage complex induced by these drugs in vivo were detected when U937 cells were treated with NBQ-59 and NBQ-76 whereas NBQ-38 and NBQ-48 produced negligible amounts of the cleavage complex. Our results strongly suggest that topoisomerase II is the major cellular target of this family of compounds.  相似文献   

4.
Topoisomerase II is the target for several highly active anticancer drugs that induce cell death by enhancing enzyme-mediated DNA scission. Although these agents dramatically increase levels of nucleic acid cleavage in a site-specific fashion, little is understood regarding the mechanism by which they alter the DNA site selectivity of topoisomerase II. Therefore, a series of kinetic and binding experiments were carried out to determine the mechanistic basis by which the anticancer drug, etoposide, enhances cleavage complex formation at 22 specific nucleic acid sequences. In general, maximal levels of DNA scission (i.e. Cmax) varied over a considerably larger range than did the apparent affinity of etoposide (i.e. Km) for these sites, and there was no correlation between these two kinetic parameters. Furthermore, enzyme.drug binding and order of addition experiments indicated that etoposide and topoisomerase II form a kinetically competent complex in the absence of DNA. These findings suggest that etoposide. topoisomerase II (rather than etoposide.DNA) interactions mediate cleavage complex formation. Finally, rates of religation at specific sites correlated inversely with Cmax values, indicating that maximal levels of etoposide-induced scission reflect the ability of the drug to inhibit religation at specific sequences rather than the affinity of the drug for site-specific enzyme-DNA complexes.  相似文献   

5.
We investigated topoisomerase I activity at a specific camptothecin-enhanced cleavage site by use of a partly double-stranded DNA substrate. The cleavage site belongs to a group of DNA topoisomerase I sites which is only efficiently cleaved by wild-type topoisomerase I (topo I-wt) in the presence of camptothecin. With a mutated camptothecin-resistant form of topoisomerase I (topo I-K5) previous attempts to reveal cleavage activity at this site have failed. On this basis it was questioned whether the mutant enzyme has an altered DNA sequence recognition or a changed rate of catalysis at the site. Utilizing a newly developed assay system we demonstrate that topo I-K5 not only recognizes and binds to the strongly camptothecin-enhanced cleavage site but also has considerable cleavage/religation activity at this particular DNA site. Thus, topo I-K5 has a 10-fold higher rate of catalysis and a 10-fold higher affinity for DNA relative to topo I-wt. Our data indicate that the higher cleavage/religation activity of topo I-K5 is a result of improved DNA binding and a concomitant shift in the equilibrium between cleavage and religation towards the religation step. Thus, a recently identified point mutation which characterizes the camptothecin-resistant topo I-K5 has altered the enzymatic catalysis without disturbing the DNA sequence specificity of the enzyme.  相似文献   

6.
The present studies provide a three-dimensional model for the postulated ternary cleavable complex of topoisomerase I (top1), DNA, and camptothecin (CPT). Molecular simulations were done using the AMBER force field. The results suggest that a ternary cleavable complex might be stabilized by several hydrogen bonds in the binding site. In this proposed "drug-stacking" model, CPT is pseudointercalated in the top1-linked DNA cleavage site and interacts with the protein near its catalytic tyrosine through hydrogen bonding and stacking. The structural model is consistent with the following experimental observations: (i) the N3 position of the 5' terminal purine of the cleaved DNA strand is readily alkylated by 7-chloromethyl 10,11-methylenedioxy CPT; (ii) CPT generally tolerates substituents at positions 7, 9, and 10 but is inactivated by additions at position 12; (iii) 10,11-methylenedioxy (MDO) CPT is much more potent than 10,11-dimethoxy (DMO) CPT; (iv) the lactone portion of CPT is essential for top1 inhibitory activity; (v) 20S derivatives of CPT are much more potent than the 20R analogues; (vi) a catalytic tyrosine hydroxyl in top1 covalently links to the 3' terminal base, T, of the cleaved DNA strand; and (vii) top1 mutation Asn722Ser leads to CPT resistance. A total of 18 camptothecin derivatives with different DNA cleavage potencies were docked into the hypothetical cleavable complex binding site to test and refine the model. These studies provide insight into a possible mechanism of top1 inhibition by CPT derivatives and suggest rational approaches for the design of new CPT derivatives.  相似文献   

7.
Site-specific DNA cleavage by topoisomerase II (EC 5.99.1.3) is induced by many antitumour drugs. Although human cells express two genetically distinct topoisomerase II isoforms, thus far the role and determinants of drug-induced DNA cleavage have been examined only for alpha. Here we report the first high-resolution study of amsacrine (mAMSA) induced DNA breakage by human topoisomerase II beta (overexpressed and purified from yeast) and a direct comparison with the recombinant alpha isoform. DNA cleavage in plasmid pBR322 and SV40 DNA was induced by alpha or beta in the absence or presence of the antitumour agent mAMSA, and sites were mapped using sequencing gel methodology. Low-resolution studies indicated that recombinant human alpha promoted DNA breakage at sites akin to those of beta, although some sites were only cleaved by one enzyme and different intensities were observed at some sites. However, statistical analysis of 70 drug-induced sites for beta and 70 sites for alpha revealed that both isoforms share the same base preferences at 13 positions relative to the enzyme cleavage site, including a very strong preference for A at +1. The result for recombinant alpha isoform is in agreement with previous studies using alpha purified from human cell lines. Thus, alpha and beta proteins apparently form similar ternary complexes with mAMSA and DNA. Previous studies have emphasized the importance of DNA topoisomerase II alpha; the results presented here demonstrate that beta is an in vitro target with similar site determinants, strongly suggesting that beta should also be considered a target of mAMSA in vivo.  相似文献   

8.
To better define the role of the amino sugar in the pharmacological and biochemical properties of anthracyclines related to doxorubicin and daunorubicin, we have investigated the effects of various substituents at the 3'- and 4'-positions of the drug on cytotoxic activity and ability to stimulate DNA cleavage mediated by DNA topoisomerase II. The study shows that the nature of the substituent at the 3'-position but not the 4'-position is critical for drug ability to form cleavable complexes. The amino group at the 3'-position is not essential for cytotoxic and topoisomerase II-targeting activities, because it can be replaced by a hydroxyl group without reduction of activity. However, the presence of bulky substituents at this position (i.e., morpholinyl derivatives) totally inhibited the effects on the enzyme, thus supporting previous observations indicating that the cytotoxic potencies of these particular derivatives are not related to topoisomerase II inhibition. This conclusion is also supported by the observation that 3'-morpholinyl and 3'-methoxymorpholinyl derivatives are able to overcome atypical (i.e., topoisomerase II-mediated) multidrug resistance. Because a bulky substituent at the 4'-position did not reduce the ability to stimulate DNA cleavage, these results support a critical role of the 3'-position in the drug interaction with topoisomerase II in the ternary complex. An analysis of patterns of cross-resistance to the studied derivatives in resistant human tumor cell lines expressing different resistance mechanisms indicated that chemical modifications at the 3'-position of the sugar may have a relevant influence on the ability of the drugs to overcome specific mechanisms of resistance.  相似文献   

9.
Diospyrin is a plant product that has significant inhibitory effect on the growth of Leishmania donovani promastigotes. This compound inhibits the catalytic activity of DNA topoisomerase I of the parasite. Like camptothecin, it induces topoisomerase I mediated DNA cleavage in vitro. Treatment of DNA with diospyrin before addition of topoisomerase I has no effect. Preincubation of topoisomerase I with diospyrin before the addition of DNA in the relaxation reaction increases this inhibition. Our results suggest that this bis-naphthoquinone compound exerts its inhibitory effect by binding with the enzyme and stabilizing the topoisomerase I-DNA "cleavable complex." Diospyrin is a specific inhibitor of the parasitic topoisomerase I. It does not inhibit type II topoisomerase of L. donovani and requires much higher concentrations to inhibit type I topoisomerase of calf thymus. The potent inhibitory effect of diospyrin on type I DNA topoisomerase from L. donovani can be exploited for rational drug design in human leishmaniasis.  相似文献   

10.
N-terminally truncated recombinant 68-kDa human topoisomerase (topo) I exhibits the same DNA-driving activities as the wild-type protein. In the present study, Raman and circular dichroism techniques were employed for detailed structural characterization of the 68-kDa human topo I and its transformations induced by the suicide sequence-specific oligonucleotide (solig) binding and cleavage. Spectroscopic data combined with statistical prediction techniques were employed to construct a model of the secondary structure distribution along the primary protein structure in solution. The 68-kDa topo I was found to consist of ca. 59% alpha-helix, 24% beta-strand and/or sheets, and 17% other structures. A secondary structure transition of the 68-kDa topo I was found to accompany solig binding and cleavage. Nearly 15% of the alpha-helix of 68-kDa topo I is transferred within the other structures when in the complex with its DNA substrate. Raman spectroscopy analysis also shows redistribution of the structural rotamers of the 68-kDa topo I disulfide bonds and significant changes in the H-bonding of the Tyr residues and in the microenvironment/conformation of the Trp side chains. No structural modifications of the DNA substrate were detected by spectroscopic techniques. The data presented provide the first direct experimental evidence of the human topo I conformational transition after the cleavage step in the reaction of binding and cleavage of DNA substrate by the enzyme. This evidence supports the model of the enzyme function requiring the protein conformational transition. The most probable location of the enzyme transformations was the core and the C-terminal conservative 68-kDa topo I structural domains. By contrast, the linker domain was found to have an extremely low potential for solig-induced structural transformations. The pattern of redistribution of protein secondary structures induced by solig binding and covalent suicide complex formation supports the model of an intramolecular bipartite mode of topo I/DNA interaction in the substrate binding and cleavage reaction.  相似文献   

11.
Bulgarein, a fungal metabolite, induced mammalian topoisomerase I-mediated DNA cleavage in vitro. The cleavage activity of bulgarein was comparable to that of camptothecin at a drug concentration range of 0.025-approximately 5 microM. The DNA cleavage induced by bulgarein was suppressed at concentrations above 12.5 microM. Treatment of a reaction mixture containing bulgarein and topoisomerase I with elevated temperature (65 degrees C) resulted in a substantial reduction in DNA cleavage, suggesting that the topoisomerase I-mediated DNA cleavage induced by bulgarein is through the mechanism of stabilizing the reversible enzyme-DNA "cleavable complex." Intensity of cleaved DNA fragments induced by bulgarein with topoisomerase I was different from that induced by camptothecin. Bulgarein inhibited catalytic activities of both topoisomerase I and topoisomerase II. The changes in absorption spectra of bulgarein in the visible region observed upon addition of increasing amounts of calf thymus DNA indicate that bulgarein interacts with DNA. DNA (un)winding assay by two-dimensional gel electrophoresis showed that bulgarein induced the winding of DNA in the opposite direction to that of an intercalator so that positively supercoiled molecules are produced. Thus, bulgarein represents a new class of drugs which stabilizes the cleavable complex of topoisomerase I and alters the structure of DNA in a manner leading to a tightening of the helical twist.  相似文献   

12.
Several experimental data support the notion that the recognition of DNA crossovers play an important role in the multiple functions of topoisomerase II. Here, a theoretical analysis of the possible modes of assembly of yeast topoisomerase II with right and left-handed tight DNA crossovers is performed, using the crystal coordinates of the docking partners. The DNA crossovers are assumed to be clamped into the central hole of the enzyme. Taking into account the rules for building symmetric ternary complexes and the structural constraints imposed by DNA-DNA and protein-DNA interactions, this analysis shows that two geometric solutions could exist, depending on the chirality of the DNA crossovers. In the first one, the two DNA segments are symmetrically recognized by the enzyme while each single double helix binds asymmetrically the protein dimer. In the second one, each double helix is symmetrically recognized by the protein around its dyad axis, while the two DNA segments have their own binding modes. The finding of potential DNA-binding domains which could interact with the crossovers provides structural supports for each model. The structural similarity of a loop containing a cluster of conserved basic residues pointing into the central hole of topoisomerase II and the second DNA-binding site of histone H5 which binds DNA crossover is of particular interest. Each solution, which is consistent with different sets of experimental data found in the literature, could either correspond to different functions of the enzyme or different steps of the reaction. This work provides structural insights for better understanding the role of chirality and symmetry in topoisomerase II-DNA crossover recognition, suggests testable experiments to further elucidate the structure of ternary complexes, and raises new questions about the relationships between the mechanism of strand-passage and strand-exchange catalyzed by the enzyme.  相似文献   

13.
An antibody-based method was used to examine genomic DNA cleavage by endogenous topoisomerases in living cells. The method quantifies cleavable (covalent) complex formation in vivo after exposure to topoisomerase poisons, as reported previously (D. Subramanian et al., Cancer Res., 55: 2097-2103, 1995). Unexpectedly, exposing cells to UVB irradiation stimulated endogenous topoisomerase I-DNA covalent complex formation by as much as 8-fold, even in the absence of drugs that stabilize the cleavable complex. Covalent complexes are not a result of nonspecific UV protein-DNA cross-linking; rather, they result from the enzymatic activity of topoisomerase I on genomic DNA. Because the action of topoisomerase II on genomic DNA was not affected by UVB exposure, the observation appears to be specific for type I. Topoisomerase I is rapidly mobilized onto the genome (within 12 min after UVB exposure); however, topoisomerase I polypeptide levels did not show a corresponding increase, suggesting that preexisting enzyme is being recruited to sites of DNA damage. Complexes persist up to 5 h post-UV exposure (concurrent with the period of active DNA repair), and their formation is independent of S phase. These findings can be partially explained by the fact that in vitro topoisomerase I activity on UV-damaged DNA tends to favor formation of cleavage complexes; thus, a higher yield of covalent complexes are detected at or near cyclopyrimidine dimer lesions. Because repair-deficient cells are additionally compromised in their ability to recruit topoisomerase I, a direct role for the enzyme in DNA excision repair process in vivo is proposed that may be related to the activity of the xeroderma pigmentosum complementation group D helicase. Finally, these results collectively demonstrate that topoisomerase I is a repair-proficient topoisomerase in vivo.  相似文献   

14.
DNA methylation is deregulated during oncogenesis. Since several major anti-cancer drugs act on topoisomerases, we investigated the effects of cytosine methylation on topoisomerase cleavage activities. Both topoisomerase I and II cleavage patterns were modified by CpG methylation in c-myc gene DNA fragments. Topoisomerase II changes, mainly cleavage reduction, occurred for methylation sites within 7 base pairs from the topoisomerase II breaks and were different for VM-26 and azatoxin. For topoisomerase I, cleavage enhancement as well as suppression were observed. Using synthetic methylated oligonucleotides, we show that hemimethylation is sufficient to alter topoisomerase I activity. Cytosine methylation on the scissile strand within the topoisomerase I consensus sequence had strong effects. Cleavage was stimulated by methylation at position -4 and was strongly inhibited by methylation at position -3 (with position -1 being the enzyme-linked nucleotide). This inhibitory effect was attributed to the presence of a methyl group in the major groove, since the transition uracil to thymine also inhibited cleavage. Altogether these results suggest an interaction of topoisomerase I with the DNA major grove at positions -3 and -4. In addition, DNA methylation may have profound effects on the activity of topoisomerases and may alter the distribution of cleavage sites produced by anticancer drugs in chromatin.  相似文献   

15.
The proposed mechanism of action of the antineoplastic drug 3-nitrobenzothiazolo[3,2-alpha]quinolinium chloride (NBQ-2) involves its interaction with DNA by intercalation and inhibition of topoisomerase II activity by arresting the enzyme in a covalent cleavage complex. In an attempt to identify some structural determinants for activity and develop a molecular structure/cytotoxicity correlation, four new structural analogs of the antitumor NBQ-2 were prepared and their cytotoxic activity and DNA binding properties were investigated. The cytotoxic activity was evaluated against six different human tumor cell lines: U937, K-562, HL-60, HT-29, HeLa, and A431. The results showed that these new drugs elicit pronounced cytotoxic effects against U937, K-562, HL-60 and A431 while HeLa and HT-29 were less sensitive to the new drugs. This apparent selectivity was different to that of m-AMSA, a drug currently used for cancer treatment. Since the interaction of NBQ-2 to DNA by intercalation has been proposed as the initial step leading to its antineoplastic activity, DNA binding and changes in DNA contour length induced by the new NBQ-2 structural analogs were also investigated using calf thymus and human DNA. The drug, 7-(1-propenyl)-3-nitrobenzimidazolo[3,2-alpha]quinolinium chloride (NBQ-59) was the most cytotoxic agent of the analog series (IC50 = 16 microM for HL-60 cells), however, it demonstrated the weakest binding to DNA (Kint = 0.9 x 10[5] M-1 for calf thymus DNA). NBQ-59 was also found to be a poor intercalator into the DNA double helix. Therefore, our results suggest that DNA binding is not the primary mechanism of drug action for this family of compounds. In addition structural determinants important for cytotoxicity of the benzazolo quinolinium chlorides were suggested by our results. In particular, the nitro group in the 3 position does not seem to be necessary for bioactivity, while substitutions in the benzazolo moiety have striking effects on the biological activity of the drugs.  相似文献   

16.
Merbarone is a catalytic inhibitor of topoisomerase II that is in clinical trials as an anticancer agent. Despite the potential therapeutic value of this drug, the mechanism by which it blocks topoisomerase II activity has not been delineated. Therefore, to determine the mechanistic basis for the inhibitory action of merbarone, the effects of this drug on individual steps of the catalytic cycle of human topoisomerase IIalpha were assessed. Concentrations of merbarone that inhibited catalytic activity >/=80% had no effect on either enzyme.DNA binding or ATP hydrolysis. In contrast, the drug was a potent inhibitor of enzyme-mediated DNA scission (in the absence or presence of ATP), and the inhibitory profiles of merbarone for DNA cleavage and relaxation were similar. These data indicate that merbarone acts primarily by blocking topoisomerase II-mediated DNA cleavage. Merbarone inhibited DNA scission in a global (rather than site-specific) fashion but did not appear to intercalate into DNA or bind in the minor groove. Since the drug competed with etoposide (a cleavage-enhancing agent that binds directly to topoisomerase II), it is proposed that merbarone exerts its inhibitory effects through interactions with the enzyme and that the drug shares an interaction domain on topoisomerase II with cleavage-enhancing agents.  相似文献   

17.
We have used gel retardation analysis to show that human DNA topoisomerase IIbeta can bind a 40 bp linear duplex containing a single DNA topoisomerase IIbeta cleavage site. Furthermore, we demonstrate for the first time that human DNA topoisomerase IIbeta binds to four-way junction DNA. This supports previous suggestions that topoisomerase II may be targeted to supercoiled DNA through the recognition of DNA cruciforms, helix-helix crossovers and hairpins. DNA topoisomerase IIbeta had a 4-fold higher affinity for the four-way junction than for the linear duplex, as demonstrated by protein titration and competition analysis. Furthermore, the DNA topoisomerase IIbeta:four-way junction complex was significantly more salt stable than the complex with linear DNA. The four-way junction contained potential topoisomerase IIbeta cleavage sites straddling the points of strand exchange, and indeed, topoisomerase IIbeta was able to cleave three of these four predicted sites. This indicates that topoiso-merase IIbeta can bind to the centre of the junction. Topoisomerase II has to bind both the transported and the gated DNA helices prior to strand passage, and it is possible that both helices are provided by the four-way junction in this case. The stable complex of DNA topoisomerase IIbeta with four-way junction DNA may provide an ideal substrate for further studies into the mechanism of substrate recognition and binding by DNA topoisomerase II.  相似文献   

18.
The antitumor compounds camptothecin and its derivatives topotecan and irinotecan stabilize topoisomerase I cleavage complexes by inhibiting the religation reaction of the enzyme. Previous studies, using radiolabeled camptothecin or affinity labeling reagents structurally related to camptothecin, suggest that the agent binds at the topoisomerase I-DNA interface of the cleavage complexes, interacting with both the covalently bound enzyme and with the +1 base. In this study, we have investigated the molecular mechanism of camptothecin action further by taking advantage of the ability of topoisomerase I to couple non-DNA nucleophiles to the cleaved strand of the covalent enzyme-DNA complexes. This reaction of topoisomerase I was originally observed at moderate basic pH where active cleavage complexes mediate hydrolysis or alcoholysis by accepting water or polyhydric alcohol compounds as substitutes for a 5'-OH DNA end in the ligation step. Here, we report that a H2O2-derived nucleophile, presumably, the peroxide anion, facilitates the release of topoisomerase I from the cleavage complexes at neutral pH, and we present evidence showing that this reaction is mechanistically analogous to DNA ligation. We find that camptothecin, topotecan, and SN-38 (the active metabolite of irinotecan) inhibit H2O2 ligation mediated by cleavage complexes not containing DNA downstream of the cleavage site, indicating that drug interaction with DNA 3' to the covalently bound enzyme is not strictly required for the inhibition, although the presence of double-stranded DNA in this region enhances the drug effect. The results suggest that camptothecins prevent ligation by blocking the active site of the covalently bound enzyme.  相似文献   

19.
20.
The pattern of sites for cleavage mediated by topoisomerase II was determined in 830 kb of cloned DNA from the Drosophila X chromosome, with the objectives of comparing it with mapped structural and functional landmarks and examining if the correlations with such landmarks reported in individual loci can be generalized to a region approximately 100 times longer. The relative frequencies of topoisomerase II cleavage sites in 247 restriction fragments from 67 clones were quantified by hybridization with probes prepared from DNA fragments which abutted all cleavage sites in each clone, selected through the covalently bound topoisomerase II subunit; the specificity and quantitative nature of this method were demonstrated using a plasmid DNA model. The 12 restriction fragments with strong nuclear scaffold attachment (SAR) activity, of which seven possess autonomous replication (ARS) activity, show statistically strong coincidence or contiguity ( P 10 kb; their sensitivity is therefore unlikely to be due to alternating purine-pyrimidine repeats or regions of Z conformation, which are preferred motifs. The hypothesis that they possess intrinsic curvature is consistent with the similarity of their length and spacing to regions of predicted curvature in the 315 kb DNA of Saccharomyces cerevisiae chromosome III and with the reported strong binding preference of topoisomerase II for curved DNA. The topoisomerase II cleavage pattern in this DNA further shows that its relationships to functional properties seen in individual loci, especially to MAR/SAR and ARS activity and to the restricted accessibility of DNA to topoisomerase II in vivo, can be generalized to much longer regions of the genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号