首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
为完善CFRP布加固混凝土梁裂缝宽度计算方法,一方面基于粘结-滑移理论,对CFRP布加固混凝土梁的裂缝间距和宽度公式进行推导,提出了适用于计算CFRP布加固钢筋混凝土梁和有粘结预应力混凝土梁裂缝宽度的理论分析方法;另一方面又按照传统钢筋混凝土结构裂缝分析思路,在平均裂缝宽度lm计算公式中引入CFRP布和有粘结预应力筋影响项,在裂缝宽度wm计算公式和钢筋应力不均匀系数ψ的计算公式中引入考虑CFRP布和有粘结预应力筋作用的影响系数δf,并给出相应半理论半经验公式.两种分析方法的计算结果与试验结果吻合较好.  相似文献   

2.
对12根高强钢筋作箍筋的T形截面钢筋混凝土简支梁进行了试验研究。分析了混凝土强度、配箍率和加载方式对斜裂缝宽度的影响,建立了计算配高强箍筋的混凝土梁的斜裂缝宽度的实用公式。研究结果表明,混凝土强度大于等于C40时,配高强箍筋的混凝土梁的斜裂缝宽度可以满足《混凝土结构设计规范》(GB50010-2002)正常使用极限状态验算中裂缝宽度限值的要求。  相似文献   

3.
采用两点对称集中的同步分级加载方式,对4根配置500MPa钢筋的大保护层混凝土梁进行静力加载试验。同时,结合其它24根大保护层钢筋混凝土梁试验数据,在现行《混凝土结构设计规范》GB50010—2002裂缝宽度计算模式基础上,建议了此类构件的裂缝间距及裂缝宽度计算公式。并依据相关试验结果,对大保护层混凝土梁提出裂缝宽度控制建议。研究结果表明:(1)配置500MPa钢筋的大保护层混凝土梁裂缝发展规律与普通钢筋混凝土梁基本相同,按照规范GB50010—2002对此类构件进行裂缝宽度验算,计算值普遍大于试验值。(2)在正常使用状态下,各试件侧面裂缝宽度沿裂缝高度的分布规律基本一致,总的趋势是离受拉底面边缘越远,裂缝宽度越小。(3)对于保护层厚度c在40~65mm之间的钢筋混凝土梁,按规范GB50010—2002计算的平均裂缝间距普遍偏大;按指南CCES01—2004计算c≥40mm混凝土梁的平均裂缝间距,其计算值普遍偏小;对于c≥40mm的钢筋混凝土梁,按修正公式计算的平均裂缝间距与试验结果符合较好。  相似文献   

4.
预应力碳纤维加固RC梁挠度和裂缝计算   总被引:2,自引:1,他引:1  
提出预应力碳纤维布加固混凝土梁在不同阶段截面刚度及跨中挠度计算方法;利用传统钢筋混凝土理论推导平均裂缝间距及裂缝宽度计算公式。将理论计算结果与试验数据进行比较分析,结果表明,采用文中提出的简化公式计算的结果与试验结果吻合良好。  相似文献   

5.
对16根高强箍筋混凝土简支梁进行了受剪试验研究,分析了加载方式,混凝土强度、配箍率对斜裂缝宽度的影响,在试验基础上建立了混凝土梁斜裂缝宽度的BP网络模型.研究结果表明,该网络模型的模拟结果与试验结果符合较好,建立了高强钢筋混凝土梁受剪斜裂缝宽度和其影响因素之间的一种函数关系.因此,可以将人工神经网络运用到高强钢筋混凝土梁受剪斜裂缝宽度的研究中,实现斜裂缝宽度的预测.  相似文献   

6.
地铁管片抗裂度及裂缝宽度试验和计算方法   总被引:1,自引:0,他引:1  
为了研究钢筋混凝土衬砌管片的开裂性能,对2片 1:1 不同配筋率的钢筋混凝土衬砌管片进行了试验。研究发现,配筋率的提高对钢筋混凝土衬砌管片抗裂度的影响十分有限,随着配筋率的提高平均裂缝间距、最大裂缝宽度减小,但减小幅度不大。根据试验结果,分析了不同配筋率对钢筋混凝土衬砌管片抗裂度和裂缝宽度的影响,给出了考虑衬砌管片高度影响的抗裂度及考虑配筋率影响的最大裂缝宽度实用计算公式,理论计算结果与试验数据吻合良好。  相似文献   

7.
高强钢筋活性粉未混凝土简支梁斜裂缝宽度试验研究   总被引:1,自引:0,他引:1  
为了研究高强钢筋"活性粉末混凝土"简支梁斜裂缝宽度的发展规律,对4根不同强度等级纵筋和箍筋率的RPC简支梁进行抗剪试验,得到简支梁在各级荷载作用下的裂缝开展图.研究结果表明:在斜裂缝初期,纵筋强度等级的不同对无腹筋梁斜裂缝宽度没有明显影响,但斜裂缝发展到一定程度后,强度等级高的纵筋更加有效地抑制了斜裂缝的开展;箍筋率的提高对RPC简支梁斜裂缝宽度具有明显影响,并导致梁发生不同形态的破坏.通过对梁裂缝宽度发展规律的研究分析,得出了高强钢筋RPC简支梁最大斜裂缝宽度与平均斜裂缝宽度的关系公式.  相似文献   

8.
配置高强钢筋的混凝土梁裂缝试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
采用两点对称集中的同步分级加载方式,对8根配置500MPa钢筋和4根配置400MPa细晶钢筋的混凝土梁进行静力加载试验,观测试件的裂缝发展过程,了解此类构件的裂缝特点,为工程中推广应用500MPa钢筋和400MPa细晶钢筋提供试验依据。试验结果表明,配置500MPa钢筋和400MPa细晶钢筋的受弯构件裂缝发展规律与普通钢筋混凝土受弯构件基本相同,但在正常使用状态下,按照现行混凝土结构设计规范对此类构件进行裂缝宽度验算,计算值均大于试验值。同时,结合其它67根配置高强钢筋的混凝土梁试验数据,评估了现行混凝土结构设计规范裂缝宽度公式的适用性,并在该规范的计算模式基础上,提出平均裂缝间距及短期最大裂缝宽度计算的修正公式,修正公式的计算结果与试验结果符合较好。  相似文献   

9.
由于纤维增强聚合物(FRP)筋的弹性模量较低,FRP筋混凝土梁的设计状态通常采用其在正常使用极限状态下的裂缝宽度来控制,故准确预测最大裂缝宽度对FRP筋混凝土梁的设计及应用至关重要。FRP筋混凝土梁裂缝宽度的计算公式依然沿用我国《纤维增强复合材料建设工程应用技术规范》(GB 50608—2010)中的半经验计算公式,计算结果偏小。相较于经验公式,基于应力传递的数值计算模型可以充分反映开裂混凝土和FRP筋之间应力重分布的复杂特性。因此,在综合考虑FRP筋与混凝土间的黏结-滑移效应、裂缝间混凝土拉伸硬化效应以及材料非线性本构关系等问题的基础上,建立了FRP筋混凝土梁裂缝宽度计算的数值模型。数值分析中采用了两种黏结应力-滑移本构模型,通过对比可得,本构模型的选取对计算结果具有较大的影响。将数值模型计算结果与试验结果和按规范中公式计算的结果进行对比后发现:试验梁纯弯区短期平均裂缝宽度的模型预测结果与试验结果较为接近,两者比值的均值为0.92;按修正后的公式计算,结果更精确。  相似文献   

10.
钢筋混凝土结构三维非线性有限元裂缝追踪计算探讨   总被引:2,自引:0,他引:2  
用有限元法在计算机上对钢筋混凝土结构裂缝的产生与发展进行数值模拟时,有限元模型的选取至关重要,采用不同的有限元模型模拟出来的结果相差较大.本文针对钢筋混凝土结构的裂缝分析,提出了考虑箍筋和受压钢筋作用的三维有限元分析模型,同时引入混凝土多参数强度准则和非线性本构关系,对钢筋混凝土结构进行三维非线性有限元应力分析及裂缝开裂过程追踪;并与试验结果进行比较,吻合较好;说明考虑了箍筋作用的有限元模型对钢筋混凝土结构裂缝分析来说是较为合理的有限元模型.  相似文献   

11.
为开展预应力碳纤维增强复合材料(CFRP)布加固混凝土受弯构件时对正截面裂缝影响的研究,设计制作了配筋率不同的2组共计8根试验梁。在承受40%极限荷载的基础上利用预应力CFRP 布对试验梁正截面进行加固,并完成其静载试验,获得混凝土受弯构件在前期加载和加固后的二次受力过程中弯曲段裂缝分布、裂缝宽度和高度的试验数据。在试验数据的基础上,通过理论分析,提出了与《混凝土结构设计规范》相协调的预应力 CFRP 布加固负载混凝土梁弯曲段裂缝平均间距和最大裂缝宽度的计算公式。研究结果表明:二次受力过程中,预应力 CFRP 布能有效抑制裂缝的开展,且随着预拉应力的增加,裂缝平均间距和裂缝宽度均减小。  相似文献   

12.
GFRP筋混凝土梁受弯性能试验   总被引:3,自引:1,他引:2  
为改善GFRP(glass-fiber reinforced polymer)筋混凝土梁裂缝宽度较大的缺陷,提出一种将GFRP筋穿入金属波纹管并灌注水泥基高强灌浆料的新型构造措施,内部高强水泥基灌浆料与GFRP筋的黏结性能较好,共同参与受拉,外部金属波纹管可约束内部黏结裂缝的扩展,并增强与混凝土之间的黏结作用,进而减小GFRP筋混凝土梁的裂缝宽度.为验证其可行性,对配置钢筋、拉挤GFRP筋以及新型构造措施GFRP筋的6根简支梁开展了单调加载受弯试验,考察了GFRP筋混凝土梁在正常使用极限状态下的裂缝分布、平均裂缝间距以及平均裂缝宽度的发展规律.试验结果表明:与普通拉挤GFRP筋相比,新型构造措施可减小梁在使用阶段的裂缝宽度,延缓顺筋裂缝的出现;新型构造措施GFRP筋混凝土梁可满足各国规范0.5 mm最大裂缝宽度的限值规定,普通GFRP筋混凝土梁则不能满足要求;当GFRP筋配筋率接近或大于界限配筋率时,梁表现为首先混凝土受压破坏、最后FRP纵筋受拉断裂的失效模式,其受弯承载力高于钢筋混凝土梁,破坏前有较大的变形能力,平均挠跨比约为1/56.  相似文献   

13.
为控制连续配筋混凝土路面(CRCP)的横向裂缝,修建大比尺模型-连续配筋混凝土梁(CRCB),分析混凝土材料、配筋率、纤维及横向预切缝对CRCP开裂的影响. 构建解析模型推导横向裂缝间距和宽度的计算表达式,理论量化不同设计参数对CRCP横向裂缝特征的影响. 结果表明:解析结果与现场勘测数据吻合,说明解析法切实可行;横向裂缝随着试验梁龄期增长而发展,且于19个月后趋于稳定;配筋率对裂缝间距和宽度影响较大,采用筋径为22.23 mm(#7号钢筋)的试验梁,其裂缝间距和宽度比采用筋径为19.05 mm(#6号钢筋)的试验梁降低了17%左右;采用轻质混凝土可增大裂缝间距、减小裂缝宽度,为控制冲断提供可能;加入纤维和设置横向预切缝可增大裂缝间距、减小裂缝宽度.  相似文献   

14.
以我国现行规范JGJ92-2004《无粘结预应力混凝土结构技术规程》推荐的无粘结预应力混凝土受弯构件的裂缝宽度计算公式为基础,同时参考美国混凝土结构设计规范ACI318-08关于无粘结预应力混凝土受弯构件裂缝控制的有关设计规定,提出了无粘结预应力混凝土受弯构件裂缝宽度计算的一种简便算法.该方法的基本思路是:将无粘结预应力钢筋的有效预拉力作为构件截面外力,从而将无粘结预应力混凝土受弯构件的裂缝宽度计算转化为普通钢筋混凝土受弯构件的裂缝宽度计算.采用该方法得到的计算值与已收集到的84组无粘结预应力混凝土受弯构件裂缝宽度的试验值吻合较好,验证了所建议公式的合理性,可供我国相关规范今后修订时参考.  相似文献   

15.
为研究预应力活性粉末混凝土(RPC)-普通混凝土(NC)叠合梁的疲劳开裂性能,以中国铁路32 m T型梁为原型,制作了4根部分预应力RPC-NC叠合试验梁进行静载试验和等幅弯曲疲劳试验,对试验梁在不同次数疲劳加载下的裂缝数量、裂缝宽度、裂缝间距等开裂发展情况进行分析.以平截面假定为基础,考虑开裂截面处钢筋的疲劳应变增大系数,基于黏结滑移理论推导处于疲劳稳定阶段时RPC-NC叠合梁的裂缝间距及裂缝宽度,提出考虑RPC疲劳抗拉性能及RPC与钢筋间疲劳黏结性能的计算方法.同时为便于设计应用,在铁路规范提供的裂缝宽度计算公式的基础上,引入考虑RPC疲劳抗拉性能影响和循环荷载引起的疲劳扩大影响的系数,得到适用于预应力RPC-NC叠合梁裂缝宽度的计算式.将通过两种方法得到的计算结果和本文试验结果进行对比发现,基于黏结滑移理论的疲劳裂缝宽度计算方法和修正后的铁路规范计算公式均能较为准确地计算预应力RPC-NC叠合梁进入疲劳稳定阶段后的最大裂缝宽度.  相似文献   

16.
采用复合螺旋箍筋约束混凝土柱,能在提高混凝土核心强度的同时,实现高延性,可支撑高地震设防烈度区重要结构的设计建造.以箍筋间距与轴向力偏心距为基本参数,完成了6根复合螺旋箍筋约束混凝土柱偏心受压试验,并与同条件下两类常规复合箍筋柱进行对比.获得了轴向力-侧向变形关系、轴向力-箍筋应变关系及轴向力-压区边缘混凝土压应变关系等,发现不同螺距/间距及偏心距下试验柱先后出现纵筋屈服与混凝土压碎的破坏模式.试验结果表明,破坏时采用不高于80 mm螺距/间距的复合螺旋箍筋柱正截面承载力及以柱高中点侧移定义的位移延性系数较常规螺旋箍筋柱有一定提高.结合试验结果,发现偏压复合螺旋箍筋柱破坏机制与螺旋箍筋强核心约束和外围方形箍筋次约束的复合作用明显相关,破坏主要是核心螺旋箍筋约束失效后混凝土压碎引起,而外围复合箍筋在峰值荷载后对混凝土仍具有一定约束作用.基于破坏机制,区分了两类约束区对柱承载力贡献,提出了复合螺旋箍筋柱偏压承载力计算方法.  相似文献   

17.
In order to meet the requirement of structural inspection,the crack spacing and crack width at various heights in the tensile zone of six large depth reinforced concrete beams were measured under several loading levels of serviceability state.The effects of the depth of normal section beams on the crack spacing and crack width were analyzed,and the modified model is proposed for calculating the average crack spacing by thinking about the depth of normal section,the reinforcement arrangement and the effective reinforcement ratio.The relationships of crack widths at any position in the tensile zone and at the reinforcement level on the side surface of beam were studied.By theoretical and statistical analysis,a method is proposed to calculate the ratios of crack widths between any position and the reinforcement level on the side surface of large depth reinforced concrete beams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号