首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Nitrocarburizing of the type SAE 2205 duplex stainless steel was conducted at 450 °C, using a type of salt bath chemical surface treatment, and the microstructure and properties of the nitrided surface were systematically researched. Experimental results revealed that a modified layer transformed on the surface of samples with the thickness ranging from 3 to 28 μm changed with the treatment time. After 2205 duplex stainless steel was subjected to salt bath nitriding at 450 °C for time less than 8 h, the preexisting ferrite zone in the surface transformed into austenite by active nitrogen diffusion. The main phase of the nitrided layer was the expanded austenite. When the treatment time was extended to 16 h, the preexisting ferrite zone in the expanded austenite was decomposed and transformed partially into ε-nitride precipitate. When the treatment time extended to 40 h, the preexisting ferrite zone in the expanded austenite was transformed into ε-nitride and CrN precipitate. Further, a large amount of nitride precipitated from preexisting austenite zone. The nitrided layer depth thickness changed intensively with the increasing nitriding time. The growth of the nitride layer takes place mainly by nitrogen diffusion according to the expected parabolic rate law. The salt bath nitriding can effectively improve the surface hardness. The maximum values measured from the treated surface are observed to be approximately 1400 HV0.1 after 8 h, which is about 3.5 times as hard as the untreated material (396 HV0.1). Low-temperature nitriding can improve the erosion/corrosion resistance. After nitriding for 4 h, the sample has the best corrosion resistance.  相似文献   

2.
Influence of nitriding time on the microstructure and microhardness of AISI 321 austenite stainless steel was investigated, using a complex salt bath heat-treatment at low temperature, 430 °C. Experimental results revealed that after salt bath nitriding, a modified layer was formed on the surface of substrate with the thickness ranging from 2 μm to 30 μm with changing treating time. The nitrided layer depth thickened extensively with increasing nitriding time. The growth of the nitrided layer takes place mainly by nitrogen diffusion according to the expected parabolic rate law. Scanning electron microscopy and X-ray diffraction showed that in 321 stainless steel subjected to complex salt bathing nitrided at such temperature for less than 8 hours, the main phase of the nitrided layer was expanded austenite (S phase) by large. When the treatment time is prolonged up to 8 hours and more, S phase is formed and subsequently transforms partially into CrN, and then the secondary CrN phase precipitated. With treating time prolonged, more CrN precipitates formed along the grain boundaries in the outer part. In the inside part between the some CrN and the substrate, there is still a broad single S phase layer. All treatments can effectively improve the surface hardness.  相似文献   

3.
A case of corrosion was studied on stainless steel tubes, exposed to a nitriding, carburizing and oxidizing environment (mainly NH3 and CO2) at 390–450°C. Due to the high nitriding potential prior formation of internally nitrided layers occurs, at higher temperatures (> about 425°C) under precipitation of CrN in the layer and at lower temperatures under formation of the γN‐phase, i.e. austenite with high N‐content and expanded lattice. The latter process causes more severe corrosion, due to the high expansion, the stresses in the nitrided layers lead to bursting and repeated spalling of the scales. Carburization and oxidation are less important. The carburization is slower than nitridation, Fe3C formation is observed and carbon deposition. Also the oxidation by CO2 is slow and converts the nitrides and carbides formed before, to unprotective oxide flakes.  相似文献   

4.
Liquid nitriding of type 321 austenite stainless steel was conducted at low temperature at 430 °C, using a type of a complex chemical heat-treatment; and the properties of the nitrided surface were evaluated. Experimental results revealed that a modified layer was formed on the surface with the thickness ranging from 2 to 30 μm varying with changing treatment time. When the stainless steel subjected to the advanced liquid nitriding less than 8 h at 430 °C, the main phase of the nitrided coating layer was the S phase generally. When the treatment time prolonged up to 16 h, S phase formed and partially transformed to CrN subsequently; and then the fine secondary CrN phase precipitated. All treatments performed in the current study can effectively improve the surface hardness. The nitrided layer thickness changed intensively with the increasing nitrided time. The growth of the nitride layer took place mainly by nitrogen diffusion according to the expected parabolic rate law. The highest hardness value obtained in this experiment was about 1400 Hv0.25. Low-temperature nitriding can improve the corrosion resistance of the 321 stainless steel against diluted vitriolic acid. The immerse test results revealed that the sample nitrided for 16 h had the best corrosion resistance than the others. SEM examinations indicated that after nitriding, the corrosion mechanisms of the steel had changed from serious general corrosion of untreated sample to selectivity corrosion of nitrided samples in the diluted vitriolic acid.  相似文献   

5.
Low-temperature salt bath nitriding of heat treated and tempered 13/4 Martensitic stainless steel (13/4HTT) was carried at 450 °C (N450) and 500 °C (N500) for 10 h each. The nitrided samples were characterized by using x-ray diffractometer, field emission scanning electron microscope and optical microscope. The nanohardness and elastic modulus of the cross section of nitrided specimen were measured by nanoindentation test using Hysitron TI950 triboindenter. The nitrided 13/4HTT (N450 and N500) and 13/4HTT specimens were subjected to slurry erosion test in a slurry pot tester. The test was conducted for 48 h, and weight loss was measured after every 6 h. The relative speed of slurry with respect to specimen was 4.55 m/s. It was found that the weight loss due to erosion of the N450 is 83% less than that of 13/4HTT and that of N500 was 92% more than that of 13/4HTT. The erosion mechanism is correlated to the phases present in the specimens. The improvement in the slurry erosion resistance of N450 is due to presence of expanded martensite (\(\alpha_{N}\)-Fe). Increasing the temperature of nitriding to 500 °C led to the decrease in the slurry erosion resistance of N500 due to the formation of brittle CrN phase.  相似文献   

6.
Systematic microstructure characterisation of plasma nitrided (350-500 °C for 10 to 30 h) 17-4PH alloy was carried out using SEM, XRD and TEM. Experimental results have shown that the microstructure and phase constituents of the plasma surface alloyed cases are highly treatment temperature dependent. When treated at low-temperatures (≤ 420 °C), the microstructure is dominated by nitrogen supersaturated martensite (α'N-expanded martensite); Nitrogen S-phase grains can be formed from the pre-existent retained austenite by converting the retained austenite grains in 17-4PH but no continuous S-phase layer was found. When treated at high-temperatures (above 420 °C), a surface γ′-Fe4N compound layer was formed, CrN precipitated and S-phase was decomposed.  相似文献   

7.
The influence of low temperature plasma nitriding on the wear and corrosion resistance of AISI 420 martensitic stainless steel was investigated. Plasma nitriding experiments were carried out with DC-pulsed plasma in 25% N2 + 75% H2 atmosphere at 350 °C, 450 °C and 550 °C for 15 h. The composition, microstructure and hardness of the nitrided samples were examined. The wear resistances of plasma nitrided samples were determined with a ball-on-disc wear tester. The corrosion behaviors of plasma nitrided AISI420 stainless steel were evaluated using anodic polarization tests and salt fog spray tests in the simulated industrial environment.The results show that plasma nitriding produces a relatively thick nitrided layer consisting of a compound layer and an adjacent nitrogen diffusion layer on the AISI 420 stainless steel surface. Plasma nitriding not only increases the surface hardness but also improves the wear resistance of the martensitic stainless steel. Furthermore, the anti-wear property of the steel nitrided at 350 °C is much more excellent than that at 550 °C. In addition, the corrosion resistance of AISI420 martensitic stainless steel is considerably improved by 350 °C low temperature plasma nitriding. The improved corrosion resistance is considered to be related to the combined effect of the solid solution of Cr and the high chemical stable phases of ?-Fe3N and αN formed on the martensitic stainless steel surface during 350 °C low temperature plasma nitriding. However, plasma nitriding carried out at 450 °C or 550 °C reduces the corrosion resistance of samples, because of the formation of CrN and leading to the depletion of Cr in the solid solution phase of the nitrided layer.  相似文献   

8.
目的研究低温盐浴氮化17-4PH不锈钢经中温时效处理后氮化层组织性能的变化情况。方法采用光学显微镜(OM)分析氮化层的厚度和显微组织,利用X射线衍射仪(XRD)检测渗氮层的相组成,利用显微硬度计测定渗层的硬度,利用冲刷腐蚀实验评价渗层的耐腐蚀性能。结果 17-4PH不锈钢氮化后在425~475℃时效保温处理,其渗层厚度随时效时间的延长而增加。时效处理使渗层中N原子的浓度发生改变,过饱和扩展奥氏体发生分解,析出与其结构同为面心立方结构的Fe4N、Fe2N和Cr N。时效温度的升高能加速扩展奥氏体的分解,促进Cr N析出及氧化物的生成。经过渗氮时效后,渗层深度可达27.4μm。根据热力学公式计算出N原子在时效过程中的扩散激活能为216.2 k J/mol,表面显微硬度在初期显著升高,达到了近1150HV0.1,随后逐渐降低。在475℃、50 d的时效条件下,冲刷腐蚀中的失重率达到最大值30.3 mg/(h·dm~2)。结论不锈钢氮化后在一定的温度和时间内时效处理会达到最大表面硬度,在随后的保温过程中硬度开始下降。时效处理后17-4PH不锈钢的耐冲刷腐蚀性能下降。  相似文献   

9.
In this work, the effects of plasma nitriding (PN) and nitrocarburizing on HVOF-sprayed stainless steel nitride layers were investigated. 316 (austenitic), 17-4PH (precipitation hardening), and 410 (martensitic) stainless steels were plasma-nitrided and nitrocarburized using a N2 + H2 gas mixture and the gas mixture containing C2H2, respectively, at 550 °C. The results showed that the PN and nitrocarburizing produced a relatively thick nitrided layer consisting of a compound layer and an adjacent nitrogen diffusion layer depending on the crystal structures of the HVOF-sprayed stainless steel coatings. Also, the diffusion depth of nitrogen increased when a small amount of C2H2 (plasma nitrocarburizing process) was added. The PN and nitrocarburizing resulted in not only an increase of the surface hardness, but also improvement of the load bearing capacity of the HVOF-sprayed stainless steel coatings because of the formation of CrN, Fe3N, and Fe4N phases. Also, the plasma-nitrocarburized HVOF-sprayed 410 stainless steel had a superior surface microhardness and load bearing capacity due to the formation of Cr23C6 on the surface.  相似文献   

10.
In this study, an ultrafine-grained surface layer with the average grain size of about 10 nm was fabricated on a stainless steel plate by surface mechanical attrition treatment (SMAT). Plasma nitriding of the samples was carried out by a low-frequency pulse-excited plasma unit. Optical microscopy, x-ray diffraction, scanning electron microscopy, transmission electron microscopy, micro-indentation, and pin-on-disk wear and corrosion experiments were performed for characterization before and after plasma nitriding. It is found that the pre-SMATed sample developed a nitrided layer twice as thick as that on the as-received sample under the same nitriding conditions (300 °C for 4 h), which can be mainly attributed to the fast diffusion of nitrogen along grain boundaries in the nanostructured layer induced by means of SMAT. Results showed that nitriding layers of the as-received and pre-SMATed samples up to 300 °C are dominated by S-phase (γN), but its peak intensity for the pre-SMATed sample is sharper than that of the as-received one. During 500 °C nitriding treatment, the nitrogen would react with Cr in the steel to form CrN precipitates, which would lead to the depletion of chromium in the solid solution phase of the nitrided layer. Furthermore, the nitrided layer of the pre-SMATed sample exhibited a high hardness, and an excellent wear and corrosion resistance.  相似文献   

11.
Plasma nitriding of an AISI 316L austenitic stainless steel at low (400 °C) and high temperatures (550 °C) was performed under different nitriding gas mixtures. Nitrided surfaces were characterized by XRD using the Rietveld method. Expanded austenite “γN” with a special triclinic (t) crystalline structure was formed during the low-temperature nitriding treatment. Minor volume fractions of Fe3N, Fe4N and Cr2N nitrides were also found. The expanded austenite phase showed a distortion ε of the lattice angles due to a very high nitrogen content dissolved in austenite, supersaturating the solid solution and leading to a 10% lattice distortion and to high compressive residual stresses at the surface.After nitriding the specimens at 550 °C the case was composed primarily by a high volume fraction of Fe4N, Cr2N and CrN nitrides, leading to a low distortion of the parent austenitic phase, maintaining the original cubic lattice.  相似文献   

12.
The low-alloy steel was nitrided in a pure NH3 gas atmosphere at 640 ~ 660 °C for 2 h, i.e., high-temperature gas nitriding (HTGN), followed by tempering at 225 °C, which can produce a high property surface coating without brittle compound (white) layer. The steel was also plasma nitriding for comparison. The composition, microstructure and microhardness of the nitrided and tempered specimens were examined, and their tribological behavior investigated. The results showed that the as-gas-nitrided layer consisted of a white layer composed of FeN0.095 phase (nitrided austenite) and a diffusional zone underneath the white layer. After tempering, the white layer was decomposed to a nano-sized (α-Fe + γ′-Fe4N + retained austenite) bainitic microstructure with a high hardness of 1150HV/25 g. Wear test results showed that the wear resistance and wear coefficient yielded by the complex HTGN plus tempering were considerably higher and lower, respectively, than those produced by the conventional plasma nitriding.  相似文献   

13.
Nitrogen uptake affects corrosion of stainless steel in diesel exhaust systems where urea is injected to reduce NO x . This was examined by exposing plasma nitrided 304L and 904L to humid air at 450–600 °C. The samples were characterized primarily by using XRD, AES and XPS. The as-nitrided samples had 10–20 at.% N in 3–40 μm layers dominated by expanded austenite supersaturated with N, or the S-phase. Nitrogen was detrimental, with oxide thicknesses about 70–100 times thicker than on as-received 304L and 2–5 times thicker on 904L. In the S-phase the Cr activity is reduced by short-range ordering with N, hampering formation of protective oxides. On 304L the fraction of thick oxides decreased significantly with increasing temperature, despite formation of CrN, since formation of bcc promotes Cr diffusion. For 904L the S-phase is more stable and the corrosion less severe due to its alloying content. At 500 °C formation of CrN enhanced the corrosion.  相似文献   

14.
C.X Li  T Bell 《Corrosion Science》2004,46(6):1527-1547
AISI 316 austenitic stainless steel has been plasma nitrided using the active screen plasma nitriding (ASPN) technique. Corrosion properties of the untreated and AS plasma nitrided 316 steel have been evaluated using various techniques, including qualitative evaluation after etching in 50%HCl + 25%HNO3 + 25%H2O, weight loss measurement after immersion in 10% HCl, and anodic polarisation tests in 3.5% NaCl solution. The results showed that the untreated 316 stainless steel suffered severe localised pitting and crevice corrosion under the testing conditions. AS plasma nitriding at low temperature (420 °C) produced a single phase nitrided layer of nitrogen expanded austenite (S-phase), which considerably improved the corrosion properties of the 316 austenitic stainless steel. In contrast, AS plasma nitriding at a high temperature (500 °C) resulted in chromium nitride precipitation so that the bulk of the nitrided case had very poor corrosion resistance. However, a thin deposition layer on top of the nitrided case, which seems to be unique to AS plasma nitriding, could have alleviated the corrosion attack of the higher temperature nitrided 316 steel.  相似文献   

15.
This article studies the effect of silicon (Si) on ultrahigh-strength AISI 4340 steels in connection with the thermal treatment, as well as the influence of this element on nitriding and, consequently, abrasive wear. Four alloys with different Si contents were nitrided at 350 °C (4 and 8 h) and 500 and 550 °C (2 and 4 h) in a gas mixture of 80 vol.% H2 and 20 vol.% N2. The nitrided layers were characterized by microhardness and pin-on-disk tests, optical microscopy, scanning electron microscopy with energy-dispersive x-ray spectrometry, and x-ray diffraction (XRD). The increase in Si enhanced the tempering resistance of the steels and also improved considerably the hardness of the nitrided layers. The increase in Si produced thinner compound layers with better hardness quality and high abrasive wear resistance. XRD analysis detected a mixture of nitrides in the layers γ′-Fe4N, ε-Fe2–3N, CrN, MoN, and Si3N4 with their proportions varying with the nitriding conditions.  相似文献   

16.
《Acta Materialia》2003,51(12):3363-3374
Nitrided and tempered AISI 410S stainless steel was tested under corrosion–erosion conditions and compared to conventional AISI 420 martensitic stainless steel. The corrosion–erosion resistance of the nitrided specimens was higher than that of the AISI 420 steel when tempered at 200 °C, but it decreased with tempering temperature in the range between 200 and 600 °C. The higher corrosion–erosion resistance of the high-nitrogen steel was credited to a more homogeneous distribution of chromium in martensite and a lower number of coarse second-phase particles, especially for tempering temperatures below 550 °C. The hexagonal ϵ-nitride was identified in specimens tempered at 200 °C, while finely distributed cubic CrN nitrides were observed in specimens tempered between 400 and 600 °C. Hexagonal Cr2N nitrides were observed at 550 and 600 °C. These coarse, high-chromium precipitates were responsible for the drop in corrosion resistance of the nitrided specimens.  相似文献   

17.
目的 提高17-4PH马氏体沉淀硬化不锈钢的表面硬度及耐磨性。方法 采用光纤激光器对17-4PH不锈钢进行激光气体氮化,采用不同激光功率在其表面制备渗氮层。利用光学显微镜(OM)、电子扫描显微镜(SEM)和X射线衍射仪(XRD)等设备分析渗氮层的显微组织和相组成;借助显微硬度仪测试渗氮层截面深度方向的硬度;采用多功能摩擦磨损试验机测试基体、渗氮层的摩擦学性能,并通过SEM分析磨痕形貌,揭示基体与渗氮层的磨损机制。结果 在渗氮前样品组织为回火马氏体,经激光渗氮后样品表面形成了由板条马氏体组成的熔化区和回火马氏体组成的热影响区构成的渗氮层。经渗氮后,样品的硬度均得到提高。在激光功率3 000 W下,渗氮层的表面硬度最高,达到了415HV0.2,约是基体硬度的1.2倍,渗氮层的硬度随着深度的增加呈下降趋势,在深度为2.6 mm处其硬度与基体一致。在回火马氏体向板条马氏体转变的相变强化,以及氮原子(以固溶方式进入基体)的固溶强化作用下,提高了渗氮层的硬度。经渗氮后,样品的摩擦因数均高于基体,但渗氮后其磨损量相较于基体有所减少,在激光功率3 000 W下,其磨损体积最小,相较于基体减少了62%。在激光功率2 500 W下马氏体转变不完全,在激光功率3 500 W下渗氮层出现了裂纹,都降低了渗氮层的硬度,其耐磨性也随之减小,且都略低于在3 000 W下。磨损机制由渗氮前的以黏着磨损为主,转变为渗氮后的以磨粒磨损为主。结论 在17-4PH马氏体沉淀硬化不锈钢表面进行激光渗氮后,其表面硬度和耐磨性均得到提高,在激光功率3 000 W下制备的渗氮层具有较高的表面硬度和优异的耐磨性。  相似文献   

18.
The nature of the near-surface γN phase produced by low-temperature (~400 °C) plasma-assisted nitriding of an austenitic stainless steel 304L is studied. A combination of global probes (X-ray diffraction, nuclear reaction analysis, glow discharge optical emission spectroscopy) and local probes (field ion microscopy, conversion electron Mössbauer, X-ray absorption near edge structure and extended X-ray absorption fine structure spectroscopies) is employed to reveal the morphology, phase structure, atomic ordering and chemical state of the obtained γN phase. The results consistently reveal the heterogeneous nature of the nitrided layer consisting of nanometric CrN precipitates embedded in a Fe4N-like matrix. The size of the precipitates is found to be larger at the surface than at the nitrided layer–steel interface. The precipitates have irregular, sphere-like shapes. Moreover, X-ray spectroscopic investigation revealed three different intermetallic distances and different chemical environments for Fe, Cr and Ni, accompanied by a large static disorder. These findings suggest that the presence of the interstitial N destabilizes the homogeneous element distribution in 304L even at such low temperatures. This leads to the segregation into Cr-rich zones that are coherent with the Fe4N matrix. Possible atomistic decomposition mechanisms are discussed. Based on the heterogeneous nature of the γN phase revealed in 304L, an alternative view of its remarkable combination of properties such as large hardness, induced ferromagnetism and preserved corrosion resistance is considered.  相似文献   

19.
The precipitation of secondary carbides in the laser melted high chromium cast steels during tempering at 300-650?°C for 2?h in air furnace was characterized and the present phases was identified, by using transmission electron microscopy. Laser melted high chromium cast steel consists of austenitic dendrites and interdendritic M23C6 carbides. The austenite has such a strong tempering stability that it remains unchanged at temperature below 400?°C and the secondary hardening phenomenon starts from 450?°C to the maximum value of 672 HV at 560?°C. After tempering at 450?°C fine M23C6 carbides precipitate from the supersaturated austenite preferentially. In addition, the dislocation lines and slip bands still exist inside the austenite. While tempering at temperature below 560?°C, the secondary hardening simultaneously results from the martensite phase transformation and the precipitation of carbides as well as dislocation strengthening within a refined microstructure. Moreover, the formation of the ferrite matrix and large quality of coarse lamellar M3C carbides when the samples were tempered at 650?°C contributes to the decrease of hardness.  相似文献   

20.
Optical microscopy (OM) and transmission electron microscopy (TEM) were used to investigate the effect of tempering temperature on the experimental extra-high carbon steels.It is found that tempering reaction can reduce austenite content and influence the stability of the austenite.As-normalized microstructure is a mixture of twinned martensite and retained austenite.Tempered at 250 ℃ for 2 h,lath martensite can occasionally be found nearby the diffusionally decomposed austenite arca.It also is found that tempering at 650 ℃ for 2 h,nanoparticles of carbides precipitate in the martensite and decomposed austenite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号