首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A356是一种高强度铝硅铸造态合金,广泛用于食品、化工、船舶、电器和汽车行业。熔焊这种铸造合金时存在许多问题,如孔隙、微裂隙、热裂等。然而,用搅拌摩擦焊(FSW)来焊接这种铸造态合金可以避免上述缺陷发生。研究了搅拌摩擦焊工艺参数对铸造态A356铝合金抗拉强度的影响;对旋转速度、焊接速度和轴向力等工艺参数进行优化;从宏观和微观组织分析角度对焊接区的质量进行分析;对焊接接头的抗拉强度进行了测定,并对抗拉强度与焊缝区硬度和显微组织的相关性进行了研究。在旋转速度1000r/min、焊接速度75mm/min和轴向力5kN的条件下得到的焊接接头具有最高的抗拉强度。  相似文献   

2.
6061-T6铝合金的静止轴肩搅拌摩擦焊工艺及组织性能   总被引:6,自引:5,他引:1       下载免费PDF全文
申浩  杨新岐  李冬晓  崔雷 《焊接学报》2016,37(5):119-123
采用自主研制的静止轴肩搅拌摩擦焊工具系统成功获得了6061-T6铝合金的对接接头. 对该接头的焊缝成形、显微组织、硬度分布以及拉伸性能分别进行了试验研究. 结果表明,SSFSW工艺所得6061-T6铝合金接头具有非常美观的焊缝成形,与常规的FSW工艺相比,几乎没有出现焊缝减薄的现象;焊缝组织分区也有明显的不同,TMAZ非常窄,只有几百微米;接头的硬度呈"W"形分布;在转速1 000 r/min,焊速为200 mm/min时,接头的抗拉强度和断后伸长率达到最大,分别为母材的71.5%和44.6%;拉伸试样均断裂在热影响区,它是接头发生断裂的最薄弱区域.  相似文献   

3.
搅拌摩擦焊(FSW)是一种固态连接技术,可用来连接高强度铝合金及多种陶瓷颗粒增强金属基复合材料(MMCs)。搅拌摩擦焊获得的陶瓷增强金属基复合材料焊缝优良,在增强体与基体间没有发生有害反应。对搅拌摩擦焊接工艺参数对AA6061-B4C焊接接头抗拉强度的影响进行研究。采用4因素5水平的中心复合设计来控制实验的次数。构建一数学模型来分析搅拌摩擦焊工艺参数对接头抗拉强度的影响。结果表明,在旋转速度1000r/min、焊接速度1.3mm/s、轴向力10kN、增强相含量12%的条件下,搅拌摩擦焊得到的焊接接头的抗拉强度最大。根据构建的模型采用广义简约梯度算法进行优化以得到最大的抗拉强度。金相分析表明,在焊接接头中出现了多种区域,如焊合区、热力影响区和热影响区。在焊合区观察到大量的被细化的铝基体晶粒以及粒径明显减小的B4C颗粒。在热力影响区出现塑性变形、热影响和被拉长的铝晶粒。  相似文献   

4.
Silicon carbide particulate (SiCp) reinforced cast aluminium (Al) based metal matrix composites (MMCs) have gained wide acceptance in the fabrication of light weight structures requiring high specific strength, high temperature capability and good wear resistance. Friction stir welding (FSW) process parameters play major role in deciding the performance of welded joints. The ultimate tensile strength, notch tensile strength and weld nugget hardness of friction stir butt welded joints of cast Al/SiCp MMCs (AA6061 with 20% (volume fraction) of SiCp) were investigated. The relationships between the FSW process parameters (rotational speed, welding speed and axial force) and the responses (ultimate tensile strength, notch tensile strength and weld nugget hardness) were established. The optimal welding parameters to maximize the mechanical properties were identified by using desirability approach. From this investigation, it is found that the joints fabricated with the tool rotational speed of 1370 r/min, welding speed of 88.9 mm/min, and axial force of 9.6 kN yield the maximum ultimate tensile strength, notch tensile strength and hardness of 265 MPa, 201 MPa and HV114, respectively.  相似文献   

5.
ODS钢搅拌摩擦焊接头的微观组织及其高温力学性能   总被引:2,自引:2,他引:0       下载免费PDF全文
张静  韩文妥  常永勤  万发荣 《焊接学报》2015,36(10):9-11,40
采用搅拌摩擦焊(friction stir welding,FSW)技术对氧化物弥散强化(oxide dispersion strengthen,ODS)铁素体钢进行了焊接,并对焊接工艺进行了优化. 当转速为150 r/min,焊接速度为30 mm/min时可以获得无焊接缺陷的ODS钢焊接接头. 结果表明,采用FSW焊接的ODS钢接头的微观组织出现明显的洋葱环结构,搅拌区为等轴再结晶晶粒,前进侧热机影响区表现出明显的塑性流动的特征,热影响区的晶粒较母材也发生了明显改变. 接头的高温拉伸性能偏低,但经过温度1 150 ℃,时间1 h的热处理后,其高温拉伸性能得到大幅提高,与母材拉伸性能接近.  相似文献   

6.
Fusion welding of cast A319 (Al-Si-Cu) alloy will lead to many problems including porosity, micro-fissuring, and hot cracking. Friction Stir Welding (FSW) can be used to weld A319 alloy without these defects. In this investigation, an attempt has been made to study the effect of FSW process parameters on the tensile strength of A319 alloy welded joints. Joints were made using different combinations of tool rotation speed, welding speed, and axial force, each at four levels. The quality of weld zone was analyzed using macrostructure and microstructure analysis. Tensile strength of the joints were evaluated and correlated with the weld zone microstructure. The joint fabricated with a 1200 rpm tool rotation speed, 40 mm/min welding speed, and 4 kN axial force showed superior tensile strength compared with the other joints.  相似文献   

7.
Types and distribution of intermetallic compound phases and their effects on the mechanical properties of dissimilar Al/Cu friction stir welded joints were investigated. Three different rotation speeds of 1000, 1200 and 1400 rpm were used with two welding speeds of 20 and 50 mm/min. The results show that the microstructures inside the stir zone were greatly affected by the rotation speed. Complex layered structures that containing intermetallic compound phases such as CuAl2, Al4Cu9 were formed in the stir zone. Their amount found to be increased with increasing rotation speed. However, the increasing of the rotation speed slightly lowered the hardness of the stir zone. Many sharp hardness peaks in the stir zones were found as a result of the intermetallic compounds formed, and the highest peaks of 420 Hv were observed at a rotation speed of 1400 rpm. The joints ultimate tensile strength reached a maximum value of 105 MPa at the rotation speed of 1200 rpm and travel speed of 20 mm/min with the joint efficiency ranged between 88 and 96% of the aluminum base metal. At the travel speed of 50 mm/min, the maximum value of the ultimate tensile strength was 96 MPa at rotation speed of 1400 rpm with the joint efficiency ranged between 79 and 90%. The fracture surfaces of tensile test specimens showed no evidence for the effect of the brittle intermetallic compounds in the stir zones on the tensile strength of the joints.  相似文献   

8.
Friction stir welding (FSW) is an ecologically benign solid-state joining process. In this work, FSW of low-carbon AISI 1006 steel was carried out to study the microstructure and mechanical properties of the resulting joints at both room temperature (RT) and 200 °C. In the parameter space investigated here, a rotational tool speed and translation feed combination of 1200 rpm and 60 mm/min produced a defect-free weld with balanced mechanical properties and a superior Vickers microhardness profile compared to all other conditions and to base metal (BM). At faster translation feeds (100 and 150 mm/min), wormhole defects were observed in the weld microstructure and were attributed to higher strain rate experienced by the weld zone. Under tensile loading, welded material exhibited yield strength that was up to 86 and 91% of the BM at RT and 200 °C, respectively. On the other hand, tensile strength of welded material was nearly similar to that of the base metal at both RT and 200 °C. However, at both temperatures the tensile ductility of the welded joints was observed to be significantly lower than the BM. Annealing of the 1200 rpm and 60 mm/min FSW specimen resulted in tensile strength of 102% compared to base material and 47% increase in the strain at failure compared to the as-welded specimen. The Charpy impact values revealed up to 62 and 53% increase in the specific impact energy for the 1200 rpm and 60 mm/min welded joints as compared with the BM.  相似文献   

9.
This article reports a research study that shows the effect of shoulder diameter size on the resulting weld properties of dissimilar friction stir welds between 5754 aluminum alloy (AA) and C11000 copper (Cu). Welds were produced using three different shoulder diameter tools: 15, 18, and 25?mm by varying the rotational speed between 600 and 1200?rpm and the traverse speed between 50 and 300?mm/min to achieve the best result. Each parameter combination was chosen to represent different heat input conditions (low, intermediates and high). The welds were characterized through microstructural evaluation, tensile testing, microhardness measurements, x-ray diffraction analysis, and electrical resistivity. Microstructural evaluation of the welds revealed that the welds produced consisted of all the friction stir welding (FSW) microstructure zones with organized flow lines comprising mixture layers of aluminum (Al) and copper (Cu) at the Stir Zones. The average Ultimate Tensile Strength (UTS) of the welds considered ranged from 178 to 208?MPa. Higher Vickers microhardness values were measured at the joint interfaces of all the welds because of the presence of intermetallic compounds in these regions. The x-ray diffraction analysis revealed the presence of Al4Cu9 and Al2Cu intermetallics at the interfacial regions, and low electrical resistivities were obtained at the joint interfaces. An optimized parameter setting for FSW of Al and Cu was obtained at the weld produced at 950?rpm and 50?mm/min with the 18-mm shoulder diameter tool.  相似文献   

10.
In this study, the dissimilar friction stir welding(FSW) butt joints between aluminum alloy 5754-H114 and commercially pure copper were investigated. The thickness of welded plates was 4 mm and the aluminum plate was placed on the advancing side. In order to obtain a suitable flow and a better material mixing, a 1-mm offset was considered for the aluminum plate, toward the butt centerline. For investigating the microstructure and mechanical properties of FSWed joints, optical microscopy and mechanical tests(i.e., uniaxial tensile test and microhardness) were used, respectively.Furthermore, the analysis of intermetallic compounds and fracture surface was examined by scanning electron microscopy and X-ray diffraction. The effect of heat generation on the mechanical properties and microstructure of the FSWed joints was investigated. The results showed that there is an optimum amount of heat input. The intermetallic compounds formed in FSWed joints were Al4Cu9 and Al2Cu. The best results were found in joints with 1000 rpm rotational speed and100 mm/min travel speed. The tensile strength was found as 219 MPa, which reached 84% of the aluminum base strength.Moreover, maximum value of the microhardness of the stir zone(SZ) was attained as about 120 HV, which was greatly depended on the grain size, intermetallic compounds and copper pieces in SZ.  相似文献   

11.
邹阳帆  李文亚  褚强  苏宇 《焊接学报》2022,43(11):56-62
以4 mm厚2219-T87铝合金为研究对象,采用数值模拟和试验研究相结合的方法,研究了焊接速度对双轴肩搅拌摩擦焊接(BT-FSW)过程中金属流动行为、接头组织特征和力学性能的影响. 模拟结果表明,随着焊接速度增加,焊缝高温区逐渐变窄,轴肩附近的材料流动减弱,而搅拌针附近的材料流动增强. 试验结果表明,随着焊接速度增加,材料汇流区及S线缺陷均向前进侧(AS)靠近,焊接速度过大时AS附近的搅拌区(SZ)形成不连续组织. 接头SZ的硬度值随着焊接速度增加而增大,而拉伸强度先增大后稍降低. 当转速为300 r/min,焊接速度为150 mm/min时,接头获得最大的拉伸强度,为414 MPa ± 4MPa.  相似文献   

12.
刘刚  王礼凡  朱磊  张玺  解芳  彭银利 《焊接》2022,(1):21-25
对厚度6 mm的6061铝合金进行了搅拌摩擦焊对接焊,采用光学显微镜、扫描电子显微镜、拉伸试验机及电化学工作站等设备对焊接接头的金相组织、断口形貌、拉伸性能和腐蚀性能进行了测试和分析.结果 表明,当焊接速度为80 mm/min、旋转速度在600 ~1500 r/min之间时,焊接接头的外观良好,无明显缺陷.随着旋转速度...  相似文献   

13.
对2024铝合金板进行不同参数下搅拌摩擦焊接, 分析了焊缝表面组织, 检查了在EXCO溶液中焊缝表面的腐蚀行为, 并讨论硬度分布与腐蚀发生的关系. 结果表明, 焊后轴肩作用区晶粒细化明显. 随转速的增加, 焊缝上表面热影响区范围加宽、轴肩作用区硬度上升、耐蚀性能提高. 在转速1500 r/min、行进速度1000 mm/min下所得焊缝金属塑性流动剧烈, 轴肩作用区硬度值已接近母材的硬度值, 在EXCO溶液中浸泡10 h后仅发生点蚀. 与母材相比, 接头硬度的软化区是腐蚀发生的区域, 但硬度值最低的位置与腐蚀最严重的区域没有严格的对应关系.  相似文献   

14.
6061-T6 sheets with 0.8?mm thickness were successfully welded using high-speed friction stir welding (FSW) technology. The microstructural evolution and fracture behaviour of the joints were studied. The results show that sound joints could be obtained at the investigated high rotational speed of 8000?rev?min?1 and welding speeds of 300–1200?mm?min?1. Compared with conventional rotational speed, the grain size in the nugget zone (NZ) is obviously refined under high rotational speed. The Mg2Si, Al8Fe2Si and Al2CuMg precipitates reprecipitated adequately in the NZ during high-speed FSW, resulting in the number of the precipitates increased significantly, and further alleviating the weld softening. The difference in weld softening leads to different fracture characteristics during the tensile process. After artificial aging, the maximum welding softening in all joints is located in the heat affected zone, and the fracture is characterised by brittle fracture.  相似文献   

15.
Butt friction stir welding between pure copper and AA5754 alloy was carried out. Reinforcing SiC nano- particles were utilized in friction stir welded (FSW) joints to decline the harmful effects of intermetallic compounds. Tensile tests, micro-hardness experiments, scanning electron microscopy and X-ray diffraction analysis were applied to studying the properties of welded joints. The joints with a travel speed of 50 mm/min and a rotation speed of 1000 r/min showed the best results. The presence of nano-sized SiC particles reduced the grain size of aluminum and copper in the stir zone (SZ) from 38.3 and 12.4 μm to 12.9 and 5.1 μm, respectively. The tensile strength of the joint in the presence of reinforcing SiC nano-particles was ~240 MPa, which is ~90% of that for the aluminum base. Furthermore, the highest microhardness of the weld zone was significantly increased from HV 160 to HV 320 upon the addition of SiC nano-particles. The results also showed that raising the heat generation in FSW joints increased the amount of Al4Cu9 and Al2Cu intermetallic compounds.  相似文献   

16.
A 17 vol% SiCp/Al–Mg–Si–Cu composite plate with a thickness of 3 mm was successfully friction stir welded(FSWed) at a very high welding speed of 2000 mm/min for the first time. Microstructural observation indicated that the coarsening of the precipitates was greatly inhibited in the heat-affected zone of the FSW joint at high welding speed, due to the significantly reduced peak temperature and duration at high temperature. Therefore, prominent enhancement of the hardness was achieved at the lowest hardness zone of the FSW joint at this high welding speed, which was similar to that of the nugget zone. Furthermore, the ultimate tensile strength of the joint was as high as 369 MPa, which was much higher than that obtained at low welding speed of 100 mm/min(298 MPa). This study provides an effective method to weld aluminum matrix composite with superior quality and high welding efficiency.  相似文献   

17.
AA1100 aluminum alloy has gathered wide acceptance in the fabrication of light weight structures. Friction stir welding process (FSW) is an emerging solid state joining process in which the material that is being welded does not melt and recast. The process and tool parameters of FSW play a major role in deciding the joint characteristics. In this research, the relationships between the FSW parameters (rotational speed, welding speed, axial force, shoulder diameter, pin diameter, and tool hardness) and the responses (tensile strength, hardness, and corrosion rate) were established. The optimal welding conditions to maximize the tensile strength and minimize the corrosion rate were identified for AA1100 aluminum alloy and reported here.  相似文献   

18.
2A12铝合金FSW板材时效成形性研究   总被引:1,自引:0,他引:1  
为评价2A12铝合金搅拌摩擦焊构件时效成形工艺,设计了以时间参数为变量的焊后时效成形工艺模拟试验,进行了FSW(FSW-搅拌摩擦焊)焊件蠕变时效力学性能及成形性研究。结果表明,在搅拌头转速750 r/min、焊速60 mm/s的焊接工艺参数下,当时效成形时间为8 h时,FSW焊接件抗拉强度达到354.1 MPa,为母材强度的79.2%,其断裂位置基本位于热影响区前进侧。在该工艺下最佳回弹时间为8 h,此时回弹率为33.49%。硬度最低点在热影响区,该区域内硬度随时效时间的增加呈递减趋势。  相似文献   

19.
In the present work, the effect of friction stir processing parameters on the mechanical properties of an interstitial free steel was studied. Four rotating speeds (800, 1250, 1600, 2000 rpm) and two traverse speeds (31.5 and 63 mm/min) were employed. On both sides of specimens, a nanograin layer with the thickness and nanograins of 150 μm and 50-100 nm were formed, respectively. For the specimen processed at rotating speed of 1600 rpm and the traverse speed of 31.5 mm/min, the maximum strength was achieved, which was about 80% increase in the strength comparing to that of base material. For constant traverse speed, the increase in the rotation speed from 800 to 1600 rpm led to a decrease in uniform and total elongation of friction stir processed samples. By contrast, when the rotating speed exceeded 1600 rpm, the uniform and total elongation was increased again, while there was a drop in strength. The results of microhardness indicate more than threefold increase in the hardness of the stirred zone comparing to that of base material.  相似文献   

20.
6061铝合金FSW接头与MIG焊接头对比试验   总被引:1,自引:0,他引:1  
田博  周友龙  陈舟  张腾 《焊接技术》2012,41(2):4-6,69
采用搅拌摩擦焊(FSW)和MIG焊分别对6061铝合金板进行了焊接试验,测试了焊接接头的强度,观察了焊接接头的金相组织,并进行了接头的硬度分布测试.结果表明,搅拌摩擦焊接头抗拉强度高达212.05 MPa,是母材抗拉强度的86%,比MIG焊的接头强度略高.焊接接头软化区宽度比MIG焊接头软化宽度窄.6061铝合金母材为典型的轧制组织,焊核区为细小的等轴晶组织,MIG焊接头焊缝为柱状晶组织.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号