首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several methods have been used to prepare ferroelectromagnetic BiFeO3 films. In this paper, we adopted a sol–gel process to fabricate BiFeO3 films on indium tin oxide (ITO)/glass substrates. X-ray diffraction pattern indicated that the samples are randomly oriented. Cross section scanning microscopy showed that the thicknesses of both films were about 1.2 μm and no apparent diffusion between the BiFeO3 films and ITO/glass substrates. Remnant polarization of 2.0 and 1.75 μC/cm2 were identified by the measuring of electric hysteresis loops for the films annealed at 500 and 600 °C respectively at an applied field of 108 kV/cm. Dielectric property and loss factor were investigated as a function of frequency. In addition, magnetism was detected at 77 K.  相似文献   

2.
Thin films of the system xAl2O3–(100 − x)Ta2O5–1Er2O3 were prepared by a sol–gel method and a dip-coating technique. The influences of the composition and the crystallization of the films on Er3+ optical properties were investigated. Results of X-ray diffraction indicated that the crystallization temperature of Ta2O5 increased from 800 to 1000 °C with increased values of x. In crystallized films, the intensities of the visible fluorescence and upconversion fluorescence tend to decrease with an increase in x values, due to the high phonon energy of Al2O3; the strongest fluorescence is observed in a crystallized film for x = 4 heat treated at 1000 °C. In amorphous films obtained by heat treatment at relatively low temperatures the Er3+ fluorescence could not be observed because strong fluorescence from organic residues remaining in the films thoroughly covered the Er3+ fluorescence. On the other hand, the Er3+ upconversion fluorescence in the amorphous films was observed to be stronger than that in the crystallized films. The strongest upconversion fluorescence is observed in an amorphous film for x = 75 heat treated at 800 °C.  相似文献   

3.
A simple sol–gel route has been developed for the preparation of nanocrystalline photocatalytic TiO2 thin films and particles at 500 °C. The synthesis involved a novel chemistry method employing nonionic surfactant molecules as a pore directing agent along with acetic acid-based sol–gel route without direct addition of water molecules. This study investigated the effect of surfactant type and concentration on the homogeneity, morphology, light absorption, dye adsorption and degradation, and hydrophilicity of TiO2 films as well as on the structural properties of the corresponding TiO2 particles. The method resulted in the synthesis of mesoporous TiO2 material with enhanced structural and catalytic properties including high surface area, large pore volume, pore size controllability, small crystallite size, enhanced crystallinity, and active anatase crystal phase. The prepared TiO2 thin films were super-hydrophilic and possessed thermally stable spherical bicontinuous mesopore structure with highly interconnected network. Highly porous TiO2 films prepared with polyethylene glycol sorbitan monooleate surfactant exhibited four times higher photocatalytic activity for the decoloration of methylene blue dye than the nonporous control TiO2 films prepared without the surfactant. This sol–gel method modified with surfactant templates is useful in the preparation of nanostructured anatase TiO2 thin films with high photocatalytic activity and desired pore structure.  相似文献   

4.
Electrochromic properties of nanocrystalline MoO3 thin films   总被引:1,自引:0,他引:1  
Electrochromic MoO3 thin films were prepared by a sol–gel spin-coating technique. The spin-coated films were initially amorphous; they were calcined, producing nanocrystalline MoO3 thin films. The effects of annealing temperatures ranging from 100 °C to 500 °C were investigated. The electrochemical and electrochromic properties of the films were measured by cyclic voltammetry and by in-situ optical transmittance techniques in 1 M LiClO4/propylene carbonate electrolyte. Experimental results showed that the transmittance of MoO3 thin films heat-treated at 350 °C varied from 80% to 35% at λ = 550 nm (ΔT =  45%) and from 86% to 21% at λ ≥ 700 nm (ΔT =  65%) after coloration. Films heat-treated at 350 °C exhibited the best electrochromic properties in the present study.  相似文献   

5.
In this work, we demonstrate that yttrium 2-methoxyethoxide is a convenient sol–gel precursor to synthesize the Y2O3:Eu3+ phosphor films. The crystallization of Y2O3:Eu3+ phosphor films prepared from the yttrium 2-methoxyethoxide occurs at about 550 °C. We have also observed that our Y2O3:Eu3+ phosphor films undergo crystal structure change above annealing temperature of 750 °C which is not previously observed in the sol–gel fabrication method. The change of photoluminescent (PL) spectra is related to the evolution of Y2O3 crystal structure. It is shown in this investigation that the post-annealing treatment will help to produce phosphor films of improved brightness. The reasons assigned are the effective elimination of OH impurities and the grain growth of phosphor films.  相似文献   

6.
Very thin TiO2 films have been prepared by sol–gel and deposited on a silver layer for Surface Plasmon Resonance (SPR) measurements. Densification of the samples has been studied by determining from SPR measurements the optical index (ranging from 1.68 to 1.92) and thickness (ranging from 6 to 2 nm) at each step of the annealing procedure. The structure of the layer (amorphous and/or crystalline) has been checked at the final stage of the thermal treatment by High Resolution Transmission Electron Microscopy (HRTEM).  相似文献   

7.
In this paper, we report silica based planar waveguides doped with Er3+, and co-doped with GeO2 and Al2O3. These sol–gel derived planar waveguides were fabricated on SOS (silica on silicon) using multiple spin-coating and rapid thermal processing (RTP). Investigation has been made on their characteristics in terms of their application in optical amplification and lasing, including photoluminescence (PL), fluorescence lifetime, refractive index, propagation loss, surface roughness, Fourier transform infrared (FTIR) spectrum and X-ray diffraction (XRD) analysis. The propagation loss of a 20-layer planar waveguide was measured to be about 1.6 dB/cm for TE0 and 2.2 dB/cm for TM0 mode. A strong emission transition (4I13/24I15/2) at 1.536 μm with a lifetime of 3.6 ms has been obtained for an optimized molar composition of 90SiO2: 10GeO2: 20AlO1.5: 1ErO1.5.  相似文献   

8.
Sol–gel derived Bi2Ti2O7 ceramic powders have been prepared from methoxyethoxides of bismuth and titanium (molar ratio of Ti/Bi = 1.23 and water/alkoxides = 1.31). The Bi2Ti2O7 phase was stable at a low temperature (700 °C), but it then transformed into mixed phases of Bi4Ti3O12 and Bi2Ti4O11 at 850–1150 °C. The single phase of Bi2Ti2O7 reoccurred at 1200 °C. Dielectric properties and ferroelectric behavior of samples sintered at 1150 and 1200 °C were examined. Under frequency of 1 MHz, samples sintered at 1150 and 1200 °C had a dielectric constant of 101.3 and 104.2, and a loss tangent of 0.0193 and 0.0145, respectively. Only the sample sintered at 1150 °C showed ferroelectric behavior, where remanent polarization is 3.77 μC cm−2 and coercive field is 24 kV cm−1. Thus, the Bi2Ti2O7 did not exhibit ferroelectricity, but the mixed phase of Bi4Ti3O12 and Bi2Ti4O11 did.  相似文献   

9.
Tb3+ doped Zn2SiO4 films have been deposited on SiO2 buffered Si wafers by sol–gel method. The structures of these films have been investigated with X-ray diffraction (XRD), atomic force microscopy (AFM), and scanning electron microscopy (SEM). The results revealed that these films were composed of nanometer-size grains with a Willemite structure and had smooth surfaces. Photoluminescence measurements of the films showed a strong emission from 5D4 to 7F5 at 544 nm. The blue emission from 5D37Fj was depressed because of cross-relaxation effect. The decay kinetics of the 5D47F5 green emission was studied and a best fitting was obtained by a double exponential function. The lifetime of the excited 5D4 state is estimated to be 5.2 ms.  相似文献   

10.
Ca5La5(SiO4)3(PO4)3O2 doped with Dy3+ were synthesized by sol–gel technology with hybrid precursor employed four different silicate sources, 3-aminopropyl-trimethoxysilane (APMS), 3-aminopropyl-triethoxysilane (APES), 3-aminopropyl-methyl-diethoxysilane (APMES) and tetraethoxysilane (TEOS), respectively. The SEM diagraphs show that there exist some novel unexpected morphological structures of microrod owing to the crosslinking reagents than TEOS as silicate source for their amphipathy template effect. X-ray pictures confirm that Ca5La5(SiO4)3(PO4)3O2:Dy3+ compound is formed by a pure apatitic phase. The Dy3+ ions could emit white light in Ca5La5(SiO4)3(PO4)3O2 compound, and the ratio of Y/B is 1.1, when the Dy3+ doped concentration is 1.0 mol%.  相似文献   

11.
Ti2S3 nanocrystallites embedded in sol–gel derived silica xerogel have been prepared. Their photoluminescence (PL) characteristics have been evaluated and compared with those of pure silica xerogel. UV–vis absorption spectra, transmission electron micrograph, excitation spectra and PL spectra of the doped and undoped samples have all been investigated. Two emission peaks have been observed from the doped samples, one at 440 nm (λex=380 nm) while the other at 600 nm (λex=550 nm). The latter has been assigned to the Ti2S3 nanocrystallites in the silica xerogel. Therefore, a novel luminescence property can be observed by introducing the semiconductor nanoparticles into the silica xerogel.  相似文献   

12.
This paper reports on the first sol–gel thin film preparation of a new optically active compound: Er2Ti2O7 (ETO). Optical, microstructural and spectroscopic properties of ETO films annealed in a temperature range 300–1000°C are studied. This work shows that the porosity and microstructure of ETO films depend closely on the heat-treatment temperature. Photoluminescence (PL) has been observed for films heat-treated at 600°C or more. The PL decay appears strongly influenced by quenching effects. For thin films treated at 600°C, quenching is essentially due to the presence of hydroxyl groups. After heat-treatment at 800°C or more, quenching can be explained by the high concentration of erbium atoms and by their distribution in the ETO lattice.  相似文献   

13.
Synthesis of Ca doped PbTiO3 powder by a chemically derived sol–gel process is described. Crystallization characteristics of different compositions Pb1−xCaxTiO3 (PCT) with varying calcium (Ca) content in the range x = 0–0.45 has been investigated by DTA/TGA, X-ray diffraction and scanning electron microscopy. The crystallization temperature is found to decrease with increasing calcium content. X-ray diffraction reveals a tetragonal structure for PCT compositions with x ≤ 0.35, and a cubic structure for x = 0.45. Dielectric properties on sintered ceramics prepared with fine sol–gel derived powders have been measured. The dielectric constant is found to increase with increasing Ca content, and the dielectric loss decreases continuously. Sol–gel derived Pb1−xCaxTiO3 ceramics with x = 0.45 after poling exhibit infinite electromechanical anisotropy (kt/kp) with a high d33 = 80 pC/N, ′ = 298 and low dielectric loss (tan δ = 0.0041).  相似文献   

14.
Synthetic process of sol–gel grown lead-zirconate-titanate (PZT) films using poly vinyl butyral (PVB) binder has been studied. By the present method, thick PZT films with about 7 μm in thickness were successfully grown, whereas thick films were not achieved without the use of the binder. In the synthetic process, amorphous PZT particles with 0.6–1.0 μm in diameter were formed at a relatively low temperature of 50°C and Pb projections were observed at 300°C. Furthermore, PbO was observed at the surface of amorphous PZT particles at 400°C. At 500°C, PZT perovskite phase started to be observed together with residual PbO phase. Finally, single PZT perovskite phase, which shows the dielectric constant and dissipation factor of 145.5 and 0.032, respectively, at a frequency of 1 kHz, was obtained at 800°C. We suggest that the use of PVB binder plays an important role in the fabrication of thick PZT film.  相似文献   

15.
Powders La2O3 doped with 1 mol% Eu were prepared via a combustion route using different reducers (urea, glycine and citric acid). The structure and morphology were determined with XRD and HRTEM measurement. The main emission positions centered at 626 nm for 5D0 → 7F2 transition are observed. The variation of CT band with different reducers is observed. The intensity of 5D0 → 7F2 transition centered at 626 nm with respect to that of 5D0 → 7F1 transition is a function of the energy difference ΔE between the two CT band positions.  相似文献   

16.
Amita Verma  Anshu Goyal  R.K. Sharma   《Thin solid films》2008,516(15):4925-4933
The properties of sol–gel derived CeTi2O6 thin films deposited using a solution of cerium chloride heptahydrate and titanium propoxide in ethanol are discussed. The effect of annealing temperature on structural, optical, photoluminescence, photocatalysis and electrochemical characteristics has been examined. Lowest annealing temperature for the formation of crystalline CeTi2O6 phase in these samples is identified as 580 °C. The optical transmittance of the films is observed to be independent of the annealing temperature. The optical energy bandgap of the 600 °C annealed film for indirect transition is influenced by the presence of anatase phase of TiO2 in its structure. Fourier transform infrared spectroscopy investigations have evidenced increased bond strength of the Ti–O–Ti network in the films as a function of annealing temperature. The photoluminescence intensity of the films has shown dependence on the annealing temperature with the films fired at 450 °C exhibiting the maximum photoluminescence activity. The decomposition of methyl orange and eosin (yellow) under UV–visible light irradiation in the presence of crystalline CeTi2O6 films shows the presence of photoactivity in these films. The photocatalytic response of CeTi2O6 films is found to be superior to the TiO2 films. In comparison to crystalline films, the amorphous films have shown superior electrochemical characteristics. The 500 °C annealed amorphous films have exhibited the most appropriate properties for incorporation in electrochromic devices comprising tungsten oxide as the primary electrochromic electrode.  相似文献   

17.
Five cordierite-based powders were investigated regarding their thermal and crystallization behaviors. The powders were obtained from amorphous gels having nominal compositions of 2Mg : xAl : (4 − x)B : 5Si where x = 4 down to 0. Thermal gravimetry analysis of the dry gels showed some absorbed water and decomposition of organic ligands in addition to network condensation. Gradual substitution of B for Al in the dried gel powders showed a new band in their infrared spectra corresponding to triangular BO3, whereas the bands corresponding to Al vanished. This also showed a noticeable effect on the crystallization trends, type and stability of cordierite. Cordierite crystallized in samples of B/Al ratio up to 1 while protoenstatite predominated in samples of higher B/Al ratios. In addition, some silica minerals, with little amorphous phase, were formed. Incorporation of boron and increase in temperature enhanced the transformation of γ cordierite to its form.  相似文献   

18.
To solve the problem of the extremely high hydrolytic reactivity of tellurium alkoxides in hydrolytic sol–gel method, the nonhydrolytic sol–gel process has been applied as a novel route for producing TeO2 based thin films. The transition of nonhydrolytic sol–gel was monitored by means of 1H NMR, FT-IR and Raman techniques. These results show that the formation of Te–O–Te bonds in gel networks mainly resulted from the nonhydrolytic cross-condensation reaction between different Te–OR groups. The decomposition process and structure evolution of the nonhydrolytic gel products were investigated and managed. Results from DTA and XRD analyses show that metallic tellurium, β-TeO2 and α-TeO2 phase appeared in the film during heat-treatment process at around 300, 350 and 400 °C, respectively. The formation of metallic tellurium can be alleviated through preheating the gel films under O2 atmosphere or by additions of the second component. Crystallization of α-TeO2 could be retarded by additions of TiO2 or Al2O3, and the transparent, homogeneous amorphous TeO2 based thin films were obtained by the methods above. The nonhydrolytic sol–gel process developed in this study offers a simple and practical method for fabricating TeO2 based thin film devices.  相似文献   

19.
Gd2Ti2O7: Eu3+ thin film phosphors were fabricated by a sol-gel process. X-ray diffraction (XRD), atomic force microscopy (AFM) and photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 800 °C and the crystallinity increased with the elevation of annealing temperatures. Uniform and crack free phosphor films were obtained, which mainly consisted of grains with an average size of 70 nm. The doped Eu3+ showed orange-red emission in crystalline Gd2Ti2O7 phosphor films due to an energy transfer from Gd2Ti2O7 host to them. Both the lifetimes and PL intensity of the Eu3+ increased with increasing the annealing temperature from 800 to 1000 °C, and the optimum concentrations for Eu3+ were determined to be 9 at.%. of Gd3+ in Gd2Ti2O7 film host.  相似文献   

20.
Using the Rietveld refinement, we analyze the structural evolution under thermal treatment of silica xerogel samples prepared by the sol–gel method with molar ratio (R) of water to TEOS of R = 5 and R = 11.66. We refine the structure of compounds using the Maud program and we found the unit cell parameters and atomic positions of the refined silica amorphous atoms for whole samples. The results show us that the amorphous structure is quartz-like or low-cristobalite-like, depending on the molar ratio values and the heat-treatment of the samples. For R = 5 different quartz structures are obtained, whereas for R = 11.66 we obtain close structures in which a transformation of quartz-like amorphous to low-cristobalite amorphous phase occurs at about 600 °C. These results give some scopes to explain the partial crystallization of the silica at relatively low temperatures obtained when metallic species are present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号