首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High permittivity (high-k) gate dielectrics were fabricated using the plasma oxidation of Hf metal/SiO2/Si followed by the post-deposition annealing (PDA), which induced a solid-phase reaction between HfOx and SiO2. The oxidation time and PDA temperature affected the equivalent oxide thickness (EOT) and the leakage current density of the high-k dielectric films. The interfacial structure of the high-k dielectric film/Si was transformed from HfOx/SiO2/Si to HfSixOy/Si after the PDA, which led to a reduction in EOT to 1.15 nm due to a decrease in the thickness of SiO2. These high-k dielectric film structures were investigated by X-ray photoelectron spectroscopy. The leakage current density of high-k dielectric film was approximately four orders of magnitude lower than that of SiO2.  相似文献   

2.
利用射频磁控溅射方法,制成纳米SiO2层厚度一定而纳米Si层厚度不同的纳米(SiO2/Si/SiO2)/p-Si结构和纳米(SiO2∶Al/Si/SiO2∶Al)/p-Si结构,用磁控溅射制备纳米SiO2∶Al时所用的SiO2/Al复合靶中的Al的面积百分比为1%.上述两种结构中Si层厚度均为1—3nm,间隔为0.2nm.为了对比研究,还制备了Si层厚度为零的样品.这两种结构在900℃氮气下退火30min,正面蒸半透明Au膜,背面蒸Al作欧姆接触后,都在正向偏置下观察到电致发光(EL).在一定的正向偏置下,EL强度和峰位以及电流都随Si层厚度的增加而同步振荡,位相相同.但掺Al结构的发光强度普遍比不掺Al结构强.另外,这两种结构的EL具体振荡特性有明显不同.对这两种结构的电致发光的物理机制和SiO2中掺Al的作用进行了分析和讨论.  相似文献   

3.
Hafnium oxide (HfO2) films were deposited on Si substrates with a pre-grown oxide layer using hafnium chloride (HfCl4) source by surface sol-gel process, then ultrathin (HfO2)x(SiO2)1−x films were fabricated due to the reaction of SiO2 layer with HfO2 under the appropriate reaction-anneal treatment. The observation of high-resolution transmission electron microscopy indicates that the ultrathin films show amorphous nature. X-ray photoelectron spectroscopy analyses reveal that surface sol-gel derived ultrathin films are Hf-Si-O alloy instead of HfO2 and pre-grown SiO2 layer, and the composition was Hf0.52Si0.48O2 under 500 °C reaction-anneal. The lowest equivalent oxide thickness (EOT) value of 0.9 nm of film annealed at 500 °C has been obtained with small flatband voltage of −0.31 V. The experimental results indicate that a simple and feasible solution route to fabricate (HfO2)x(SiO2)1−x composite films has been developed by means of combination of surface sol-gel and reaction-anneal treatment.  相似文献   

4.
Thickness and etch rate of SiO2 films thermally grown on hexagonal SiC substrates were compared to results obtained from SiO2/Si samples. The data confirm that profilometry and ellipsometry yield the same thickness values for oxides grown on Si and SiC. Within the accuracy of our measurements, oxides grown on different polytypes and faces of SiC etch at the same rate in a HF acid solution. The etch rate using a 50:1 H2O:HF(50%) solution at room temperature is 0.1 nm/s and is uniform throughout the thickness of the SiO2 films. The rate is the same as that obtained for SiO2 grown on Si.  相似文献   

5.
Si/SiO2 multilayers have been successfully prepared by magnetron sputtering and subsequently thermal annealed in an Ar atmosphere at a temperature of more than 500 °C. The surface of the as-deposited films is compact and smooth, and the distribution of grain size estimated to be 20 nm is uniform. For Si/SiO2 multilayers annealed at 1100 °C, the Si sublayer sandwiched between potential barrier SiO2 is crystalline structure by means of the analysis of Raman spectra and XRD data. The visible PL peak accompanying to a blue-shift with the decrease of Si sublayer thickness has been observed, and the intensity of this peak enhances with the increase of annealing temperature. The visible luminescence properties of Si/SiO2 multilayers can be ascribed to quantum confinement of electron-hole pairs in quantum wells with grain size lower than 4.5 nm. In Si/SiO2 multilayers, not only quantum confinement but also Si-SiO2 interface states play an important role in the optical transition. The PL peak located at 779 nm is independent of the thickness of Si sublayer, so it may be ascribed to interface mediated transition. Typical Si dangling bonds defect could be a dominating obstacle to high luminescence efficiencies.  相似文献   

6.
Si/SiO2 superlattices that exhibit intense luminescence properties were fabricated by remote plasma enhanced chemical vapor deposition. (RPECVD) and subsequent rapid thermal annealing for silicon crystallization. The effects of charge carrier confinement like blue shifting of the PL spectra and intensity increase with decreasing Silicon quantum well thickness are observed in low temperature photoluminescence experiments. The Si/SiO2 interface quality is calculated from capacitance voltage (CV) measurements on metal oxide semiconductor teststructures showing excellent layer and Si/SiO2 interface properties. The Si crystallization process is investigated and analyzed by Raman and transmission electron microscopy. Decreasing the Si quantum well thickness to 2 nm leads to light emission at room temperature.  相似文献   

7.
Dry plasma etching of sub-micron structures in a SiO2/Si/SiO2 layer system using Cr as a mask was performed in a fluorocarbon plasma. It was determined that the best anisotropy could be achieved in the most electropositive plasma. A gas composition yielding the desired SOI planar photonic crystal structures was optimized from the available process gases, Ar, He, O2, SF6, CF4, c-C4F8, CHF3, using DC bias data sets. Application of the c-C4F8/(noble gas) chemistry allowed fabrication of the desired SOI planar photonic crystal. The average etching rates for the pores and ridge waveguide regions were about 71 and 97 nm/min, respectively, while the average SiO2/Si/SiO2 to Cr etching selectivity for the ridge waveguide region was about 33:1 in case of the c-C4F8/90%Ar plasma with optimized parameters.  相似文献   

8.
SrTiO3 thin films (STO), were deposited on Si(100) covered by 2 nm of SiO2, at different temperatures from 450 °C to 850 °C using liquid injection MOCVD, the bimetallic precursor being Sr2Ti2(OiPr)8(tmhd)4. The STO films were analysed by XRD, FTIR, SIMS and TEM. An amorphous layer was observed between STO and SiO2/Si. The nature and thickness of the interlayer were determined, as well as the most favourable conditions for a good quality crystalline STO film, and a reduced interlayer.  相似文献   

9.
CsLiB6O10 (CLBO) thin films are grown on Si (100) and (111) substrates using lower index SiO2 and CaF2 as buffer layers by pulsed KrF (248 nm) excimer laser ablation of stoichiometric CLBO targets over a temperature range of 425 to 725°C. A CaF2 buffer layer is grown on Si by laser ablation while SiO2 is prepared by standard thermal oxidation. From extended x-ray analysis, it is determined that CaF2 is growth with preferred orientation on Si (100) at temperatures lower than 525°C while on Si (111) substrate, CaF2 is grown epitaxially over the temperature range; this agrees well with observed reflection high energy electron diffraction patterns. X-ray 2θ-scans indicate that crystalline CLBO are grown on SiO2/Si and CaF2/Si (100). Analysis of reflectance spectra from CLBO/SiO2/Si yields the absorption edge at 182 nm. Surface roughness of the CaF2 and CLBO/CaF2/Si film are 19 and 15 nm, respectively. This relatively rough surface caused by the ablation of wide bandgap CaF2 and CLBO limits the application of CLBO for waveguiding measurement.  相似文献   

10.
Flat band voltage (VFB) roll-off in long channel devices at thin equivalent oxide thickness (EOT) is studied on SiO2/nitrided-HfSiO stacks. VFB increases when SiO2 interfacial layer thickness decreases, and charges pumping (CP) frequency sweep analysis shows higher trap density near Si/SiO2 interface. Based on this observation, an atomic diffusion model is introduced. Higher concentration of nitrogen atom in the HfSiO(N) layer diffuses to the Si/SiO2 interface through the SiO2 layer in thinner SiO2 device, and accumulates near Si/SiO2 interface which can introduce higher density of interfacial traps. Lifetime extracted from negative bias temperature instability (NBTI), and mobility are also degraded in thinner SiO2 devices due to the higher interfacial trap density.The VFB roll-off can be improved by lowering nitrogen concentration in the HfSiO(N) layer from optimizing plasma nitridation pressure, decreasing post deposition anneal temperature, or using defect absorbing layer on the high-k oxide.  相似文献   

11.
In this paper, we present results on electrical measurements of ultra thin SiO2 layers (from 3.5 nm down to 1.7 nm), used as gate dielectric in metal-oxide-semiconductors (MOS) devices. Capacitance-voltage (C-V) measurements and simulations on MOS capacitors have been used for extracting the electrical oxide thickness. The SiO2/Si interface and oxide quality have been analyzed by charge pumping (CP) measurements. The mean interface traps density is measured by 2-level CP, and the energy distribution within the semiconductor bandgap of these traps are investigated by 3-level charge pumping measurements. A comparison of the energy distribution of the SiO2/Si interface traps is made using classical and quantum simulations to extract the surface potential as a function of the gate signal. When the gate oxide thickness <3.5 nm, we prove that it is mandatory to take into account the quantum effects to obtain a more accurate energy distribution of the SiO2/Si interface traps. We also explain the increase of the apparent interface traps density measured by 2-levels CP with the increase of the oxide thickness, for transistors made from the same technological process.  相似文献   

12.
Following the development of information technolo-gy,it has been a tendency to take the place of electronby photon as a carrier of information,since photons canmove thousands ti mes faster than electrons ,which cani mprove the rate of communication.Silico…  相似文献   

13.
The effect of the oxidation temperature (673-873 K) on the microstructural and electrical properties of thermal Ta2O5 thin films on Si has been studied. Auger electron spectroscopy and X-ray photoelectron spectroscopy results revealed that the films are non-stoichiometric in the depth; an interfacial transition layer between tantalum oxide and Si substrate, containing presumably SiO2 was detected. It has been found by X-ray diffraction that the amorphous state of Ta2O5 depends on both the oxidation temperature and the thickness of the films—the combination of high oxidation temperature (>823 K) and thickness smaller than 50 nm is critical for the appearance of a crystal phase. The Ta2O5 layers crystallize to the monoclinic phase and the temperature of the phase transition is between 773 and 823 K for the thinner layers (<50 nm) and very close to 873 K for the thicker ones. The electrical characterization (current/voltage; capacitance/voltage) reveals that the optimal oxidation temperature for achieving the highest dielectric constant (∼32) and the lowest leakage current (10−8 A/cm2 at 1 MV/cm applied field) is 873 K. The results imply that the poor oxidation related defects are rather the dominant factor in the leakage current than the crystallization effects.  相似文献   

14.
Ultrathin HfO2 gate dielectrics have been deposited on strain-compensated Si0.69Ge0.3C0.01 layers by rf magnetron sputtering. X-ray diffraction spectra show the films to be polycrystalline having both monoclinic and tetragonal phases. The formation of an interfacial layer has been observed by high-resolution transmission electron microscopy. Secondary ion mass spectroscopy and Auger electron spectroscopy analyses show the formation of an amorphous Hf-silicate interfacial layer between the deposited oxide and SiGeC films. The average concentration of Ge at the interfacial layer is found to be 2–3 at%. The leakage current density of HfO2 gate dielectrics is found to be several orders of magnitude lower than that reported for thermal SiO2 with the same equivalent thickness.  相似文献   

15.
The formation of a SiO2 layer at the Ta2O5/Si interface is observed by annealing in dry O2 or N2 and the thickness of this layer increases with an increase in annealing temperature. Leakage current of thin (less than 40 nm thick) Ta2O5 films decreases as the annealing temperature increases when annealed in dry O2 or N2. The dielectric constant vs annealing temperature curve shows a maximum peak at 750 or 800° C resulting from the crystallization of Ta2O5. The effect is larger in thicker Ta2O5 films. But the dielectric constant decreases when annealed at higher temperature due to the formation and growth of a SiO2 layer at the interface. The flat band voltage and gate voltage instability as a function of annealing temperature can be explained in terms of the growth of interfacial SiO2. The electrical properties of Ta2O5 as a function of annealing conditions do not depend on the fabrication method of Ta2O5 but strongly depend on the thickness of Ta2O5 layer.  相似文献   

16.
With a view to creating the Si LED, the mechanisms of electroluminescence (EL) in SiOxNy(Si) nanocomposite films with Si nanocrystals embedded in the SiOxNy matrix are studied experimentally and theoretically. The most important results are obtained from a Au/SiOxNySi)/p-Si structure having a semitransparent electrode, the oxynitride film containing Si nanocrystals with a mean size of 3–5 nm and a concentration of ~1018 cm?3; the measurements are made on a reverse-biased structure (substrate potential negative). Room-temperature EL is observed in the visible and IR ranges; the respective peaks are located at wavelengths of 600–700 and about 1200 nm. The study examines current-voltage characteristics of the structure and the dependence of integrated EL intensity on current, voltage, film thickness, the type of substrate conductivity, etc. The following conclusions are drawn from the experimental and theoretical results: The IR branch is mainly associated with carrier heating, avalanche ionization, and formation of light-emitting microplasmas near the substrate-film interface. The visible branch is linked to (i) hot-electron injection from the substrate into the film and (ii) impact excitation of luminescent centers at nanocrystal-matrix interfaces.  相似文献   

17.
Systematic features of endotaxial growth of intermediate germanium layers at the bonding interface in the silicon-on-insulator structure consisting of buried SiO2 layer implanted with Ge+ ions are studied in relation to the annealing temperature. On the basis of the results for high-resolution electron microscopy and thermodynamic analysis of the Si/Ge/SiO2 system it is assumed that the endotaxial growth of the Ge layer occurs via formation of a melt due to enhanced segregation and accumulation of Ge at the Si/SiO2 interface. Effect of germanium at the bonding interface on the Hall mobility of holes in silicon layers with nanometer-scale thickness is studied. It is found that the structures including the top silicon layer with the thickness 3–20 nm and incorporating germanium feature the hole mobility that exceeds by a factor of 2–3 the hole mobility in corresponding Ge-free silicon-on-insulator structures.  相似文献   

18.
Stacked HfAlO-SiO2 tunnel layers are designed for Pd nanocrystal nonvolatile memories. For the sample with 1.5 nm-HfAlO/3.5 nm-SiO2 tunnel layer, a smaller initial memory window is obtained compared to the sample with 3.5 nm-HfAlO/1.5 nm-SiO2 tunnel layer. Owing to the thermally induced traps in HfAlO-SiO2 films are located at a farther distance from the Si substrate and more effective blocking of charge leakage by asymmetric tunnel barrier, a larger final memory window and better retention characteristic can be obtained for Al/blocking oxide SiO2/Pd NCs/1.5 nm-HfAlO/3.5 nm-SiO2/Si structure. A N2 plasma treatment can further improve the memory characteristics. Better memory characteristics can be obtained for Pd-nanocrystal-based nonvolatile memory with an adequate thickness ratio of HfAlO to SiO2.  相似文献   

19.
Ferroelectric BaTiO3 thin films were deposited on single crystal Si substrates by radio-frequency magnetron sputtering. Bilayer structures of BaTiO3 thin films, either amorphous on polycrystalline (A/P) or polycrystalline on microcrystalline (P/M), were utilized to reduce the leakage current and to enhance the dielectric constant of the films compared to single polycrystalline and amorphous layer structures, respectively. Relatively lower charge density, determined by the capacitance-voltage measurement on the capacitors with a configuration of Au/ BaTiO/p-Si/Al, was detected for the BaTiO3 thin film with a structure of P/M. The current-voltage characteristics of the Al/SiO2(~1.8 nm)/p-Si/Al diodes fabricated on the Si after removing BaTiO3 layers gave direct evidence of the preservation of the Si surface crystal by using a P/M instead of a A/P structure. This was further confirmed by the Auger electron spectroscopy analysis on the samples.  相似文献   

20.
Tantalum pentoxide thin films on Si prepared by two conventional for modern microelectronics methods (RF sputtering of Ta in Ar + O2 mixture and thermal oxidation of tantalum layer on Si) have been investigated with respect to their dielectric, structural and electric properties. It has been found that the formation of ultra thin SiO2 film at the interface with Si, during fabrication implementing the methods used, is unavoidable as both, X-ray photoelectron spectroscopy and electrical measurements, have indicated. The initial films (as-deposited and as-grown) are not perfect and contain suboxides of tantalum and silicon which act as electrical active centers in the form of oxide charges and interface states. Conditions which guarantee obtaining high quality tantalum oxide with dielectric constant of 32–37 and leakage current density less than 10−7 A/cm2 at 1.5 V applied voltage (Ta2O5 thickness equivalent to about 3.5 nm of SiO2) have been established. These specifications make the layers obtained suitable alternative to SiO2 for high density DRAM application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号