首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Due to their high flexibility, high tensile strain and high fracture toughness, polymer optical fibers (POF) are excellent candidates to be utilized as embedded sensors for structure health monitoring of fiber reinforced composites. In 3D orthogonal woven structures yarns are laid straight and polymer optical fiber can be easily inserted during preform formation either as a replacement of constituents or between them. The results of the previous paper indicated how an optic fiber sensor can be integrated into 3D orthogonal woven preforms with no signal loss. This paper addresses whether incorporating POF into 3D orthogonal woven composites affects their structure integrity and performance characteristics. Range of 3D orthogonal woven composites with different number of layers and different weft densities was fabricated. The samples were manufactured with and without POF to determine the effect of embedding POF on composite structure integrity. Bending, tensile strength tests, and cross section analysis were conducted on the composite samples. Results revealed that integrity of 3D orthogonal woven composite was not affected by the presence of POF. Due to its high strain, embedded POF was able to withstand the stresses without failure as a result of conducting destructive tests of the composite samples. Micrograph of cross-section of composite samples showed that minimum distortion of the yarn cross-section in vicinity of POF and no presence of air pocked around the embedded POF which indicates that 3D woven preform provided a good host for embedded POF.  相似文献   

2.
First, a methodology for observation and modeling of microscopic damage evolution in quasi-isotropic composite laminates is presented. Based on the damage observation using both an optical microscope and a soft X-ray radiography, a damage mechanics analysis is conducted to formulate the stiffness change due to transverse cracking. Then, both energy and stress criteria are combined to provide a valid procedure to predict the transverse crack evolution. The theoretical prediction is found to agree well with the experimental results for the transverse crack density as a function of strain as well as stress–strain curves. Then, another methodology is introduced using two kinds of embedded optical fiber sensors to detect and monitor the transverse crack evolution in composite laminates. One is plastic optical fibers (POF), where the loss in optical power is generated by local deformation of POF due to transverse cracking. The other is fiber Bragg grating (FBG) sensors, where the local strain distribution within the FBG gage length due to transverse cracking alters the power spectrum of the light reflected from the FBG sensors. Embedded optical fiber sensors are found to be a powerful method to detect and monitor the transverse crack evolution in composite laminates.  相似文献   

3.
Chen LW  Tsai HH  Ke YL  Chen YC 《Applied optics》2008,47(27):4907-4914
We investigate the power losses in bent and elongated graded-index polymer optical fibers (GI POFs). The variations of power losses in deformed GI POFs for various radii of curvature and elongations are measured. A simple tensile test result is used to calculate the average plastic energy density (APED) in a deformed GI POF at various elongations. The results indicate that the APED accumulated in a deformed GI POF can be considered as a key index to study the power loss in POF. Based on the experimental results, a curve-fitted equation is proposed to estimate the power loss using the APED for various radii of curvature. The maximum difference between the proposed equation and the experimental results is less than 3% for the deformed GI POFs.  相似文献   

4.
5.
M. Saidi  A. Gabor 《Strain》2020,56(1):e12335
The study presented in this paper aims to adapt and calibrate two strain measurement techniques used for textile reinforced cementitious matrix composites (TRCMCs): distributed optical fibres and 2D digital image correlation (DIC). These composites exhibit tensile behaviour characterised by a succession of transverse cracks along specimens. During the tensile test, out-of-plane parasitic displacements may occur due to the geometry of specimens and possible imperfections of the test method. These phenomena interfere with the measurement of the strain sensors, leading to loss of results and parasitic strain. In order to eliminate them and to finely analyse the complex behaviour of TRCMCs, a test methodology and experimental approach are proposed for optical fibres, and a practical and simple solution is proposed to quantify the parasitic strains of the 2D DIC. For optical fibres, Rayleigh backscatter is used, allowing a millimetric spatial resolution and a high recording frequency. For the DIC, required equipment is used, and the results are processed through existing commercial software.  相似文献   

6.
The present paper proposes an approach to characterizing fibre/matrix (F/M) interface in carbon/carbon (C/C) composites with respect to both modes of loading that may be expected: opening or shearing. Push-out and tensile tests were used. The former tests involve the shearing mode whereas the latter ones involve the opening one. Push-out tests use a diamond indenter to load the fibres. The interface sliding shear stress was obtained from the load-fibre displacement curve. The tensile tests were conducted on specimens having fibres oriented at 90° with respect to loading direction in order to preferentially open the interfaces. Interface opening strength was extracted from the composite tensile stress–strain behaviour. The specimens were examined under load and after ultimate failure by optical microscopy (OM). The mechanical properties of the F/M interfaces were then discussed.  相似文献   

7.
The design and dimensioning of new as well as the assessment of operating high‐temperature components in service require a precise prediction of creep and stress relaxation. The increasing share of renewable energies forces fossil‐fired power plants for increasing numbers of start‐ups and shut‐downs. Consequently, transient loading conditions need to be taken into account. In order to meet this demand, non‐isothermal creep equations are necessary, which enables a consistent prediction of creep strain and stress relaxation in a wide range of temperatures and stresses. In this paper, an approach for the visco‐plastic modeling of creep and stress relaxation for non‐isothermal loading conditions is presented. The strain portions creep, “negative creep” and initial plasticity, occurring at elevated temperatures are described by temperature‐dependent phenomenological equations. Within this paper, the adjustment of the parameters is based on a wide database of hot tensile tests, creep and annealing experiments. The nickel‐base alloy NiCr20TiAl has been examined in a temperature range from 450 °C to 650 °C. The developed material models have been successfully validated with isothermal and non‐isothermal relaxation experiments. Further, the recalculation of a staged relaxation test demonstrates the capability of the defined material laws in a wide stress range under isothermal and non‐isothermal loading conditions.  相似文献   

8.
The yield behaviour of dimer acid-based polyamides (DAPA) and DAPA reinforced with cellulose fibres (CF) was examined in this study. Both dynamic mechanical analysis (DMA) and tensile tests were used to follow the effect of strain rate or frequency, temperature and filler content on the transitions temperatures, the storage modulus and the yield stresses. The DMA results show that the storage modulus increases with increasing CF concentration. The tensile tests reveal that the yield stress is strain rate, temperature and CF concentration sensitive. Both activation enthalpy and activation volume calculated by the Eyring’s model reveal a slight increase of activation energy with increasing filler content and a decrease of the activation volume. A micromechanically-model was used to predict the yield stress of both DAPA and DAPA/cellulose composites. The model predictions of the yield stress are in good agreement with the experimental data.  相似文献   

9.
To rationalise the results of stress corrosion cracking tests on smooth tensile specimens of a magnesium alloy, performed as constant extension rate tensile tests, a mesoscale fibre bundle model is employed in which the material being tested is represented by a bundle of parallel fibres. The effect of hydrogen embrittlement on the stress-strain curves measured at various strain rates is simulated by assuming that the hydrogen is generated in localised corrosion pits and subsequently diffuses into the bulk, thereby reducing the strain-to-failure of individual fibres. The stress-strain curves obtained from these simulations show the same strain rate effect as was experimentally observed.  相似文献   

10.
《Strain》2018,54(2)
The tensile properties of a polymer‐bonded explosive (PBX) were systematically studied by using quasi‐static and dynamic experiments. A non‐linear constitutive relation was developed to describe the tensile behaviour of the PBX. The tensile properties of the PBX under different strain rates and temperatures were measured in quasi‐static tests. The tensile behaviour of the PBX was found to exhibit high strain rate and strong temperature dependence, attributable to the large fraction of the polymer binder. To obtain the rational dynamic tensile results, a modified split Hopkinson tensile bar (SHTB) setup was designed such that the specimens were in dynamic stress equilibrium and deformed homogeneously at nearly constant strain rates. To characterise the viscoelastic behaviour, the master modulus curve was derived from the tensile stress relaxation tests at different temperatures. The non‐linear constitutive model was implemented in ABAQUS to predict the tensile behaviour of the PBX. The computational results were found to be in good agreement with the experimental results.  相似文献   

11.
The present investigation is concerned with the three metastable austenitic steels AISI 304 (X5CrNi1810), 321 (X6CrNiTi1810), and 348 (X10CrNiNb189). In the temperature range ?60 °C ≤ T ≤ 25 °C tensile and fatigue tests were performed to characterize the mechanical and phase transformation behavior using stress‐elongation, stress–strain hysteresis, and magnetic measurements. The mechanical properties are significantly influenced by the temperature dependent deformation induced phase transformation from austenite to α′‐martensite which are combined with pronounced hardening processes. Furthermore microhardness measurements after fracture could be correlated with the results of the fatigue tests.  相似文献   

12.
This paper performs drop-weight splitting tests to study the dynamic tensile properties of fibre reinforced concrete (FRC) materials with different steel fibres. A renovated splitting tensile testing method was developed to ensure a more qualified experimental process. The splitting tensile impact tests were conducted with an instrumented drop-weight impact system consisting of a hard steel drop weight, a fast-response load cell, a high-speed video camera and a high-frequency data acquisition system. The quasi-static compressive and splitting tests were also conducted to obtain the static properties of the FRC materials. The commonly used hooked-end steel fibre and a new spiral shaped steel fibre were tested in this study. The high-speed video camera was used to capture the detailed failure process, deformation and cracking process of the tested specimens. Average strain rates and the cracking extension displacement and velocity under impact loading were estimated by analysing the recorded high-speed images. The strains were also measured by the strain gages on the specimen surface. The dynamic stress–strain and stress–COD (cracking opening displacement) relations, the rate sensitivity of tensile strength and the corresponding energy absorption capacity of plain concrete and FRC with different fibres were obtained, compared and discussed. The advantage and effectiveness of the new spiral fibre in increasing the performance of FRC under dynamic tensile loading were examined. The results show that FRC with spiral fibres outperforms that with hooked-end fibres, and is a promising construction material in resisting dynamic loadings.  相似文献   

13.
The microstructure of flax fibres can be considered as a laminate with layers reinforced by cellulose fibrils. During a single fibre tensile test the S2 layer is subjected to shear. At room temperature, natural fibres contain water absorbed in the cell-walls. This paper examines the influence of this water at two scales: on the tensile behaviour of the flax fibres and on unidirectional plies of flax reinforced epoxy. Drying (24 h at 105 °C) is shown to reduce both failure stress and failure strain significantly. Analysis of normal stresses at the accomodation threshold provides an estimation of the shear strength of secondary cell walls as 45 MPa for fibres containing 6.4% by weight of water and only 9 MPa for dried fibres. Results from tensile tests on unidirectional flax/epoxy composites, reinforced by as-received and dried fibres, confirm the influence of drying on strength properties.  相似文献   

14.
Twinning at thermal fatigue of magnesium alloy AZ31 In this paper results of thermal fatigue tests of the magnesium base alloy AZ31 carried out in a temperature range between ‐50 °C and +290 °C are presented. Specimens were loaded under constant total strain and uniaxial homogeneous stresses. The resulting materials behaviour is described by stress amplitudes, plastic strain amplitudes and mean stresses as a function of the number of thermal loading cycles. It is well known that AZ31 shows different stress‐strain behaviour during tensile and compressive loading resp. at lower temperatures due to the fact that mechanical twinning depends on the loading direction. However untwinning processes may occur during unloading and reloading in the opposite direction. As a consequence, during the first thermal loading cycles, typical consequences of the formation and the dissolution of twins are observed. The interaction of deformation, recovery and recrystallization processes, characteristic for individual temperature ranges are discussed in detail to analyze the damage progress during thermal fatigue.  相似文献   

15.
For metallic materials, standard uniaxial tensile tests with round bar specimens or flat specimens only provide accurate equivalent stress–strain curve before diffuse necking. However, for numerical modelling of problems where very large strains occur, such as plastic forming and ductile damage and fracture, understanding the post‐necking strain hardening behaviour is necessary. Also, welding is a highly complex metallurgical process, and therefore, weldments are susceptible to material discontinuities, flaws, and residual stresses. It becomes even more important to characterize the equivalent stress–strain curve in large strains of each material zone in weldments properly for structural integrity assessment. The aim of this paper is to provide a state‐of‐the‐art review on quasi‐static standard tensile test for stress–strain curves measurement of metallic materials. Meanwhile, methods available in literature for characterization of the equivalent stress–strain curve in the post‐necking regime are introduced. Novel methods with axisymmetric notched round bar specimens for accurately capturing the equivalent stress–strain curve of each material zone in weldment are presented as well. Advantages and limitations of these methods are briefly discussed.  相似文献   

16.
The scope of this study is to characterize the mechanical properties of a novel Transformation‐Induced Plasticity bainitic steel grade TBC700Y980T. For this purpose, tensile tests are carried out with loading direction 0, 45 and 90° with respect to the L rolling direction. Yield stress is found to be higher than 700 MPa, ultimate tensile strength larger than 1050 MPa and total elongation higher than 15%. Low‐cycle fatigue (LCF) tests are carried out under fully reverse axial strain exploring fatigue lives comprised between 102 and 105 fatigue cycles. The data are used to determine the parameters of the Coffin–Manson as well as the cyclic stress–strain curve. No significant stress‐induced austenite transformation is detected. The high‐cycle fatigue (HCF) behaviour is investigated through load controlled axial tests exploring fatigue tests up to 5 × 106 fatigue cycles at two loading ratios, namely R = ?1 and R = 0. At fatigue lives longer than 2 × 105 cycles, the strain life curve determined from LCF tests tends to greatly underestimate the HCF resistance of the material. Apparently, the HCF behaviour of this material cannot be extrapolated from LCF tests, as different damage, cyclic hardening mechanisms and microstructural conditions are involved. In particular, in the HCF regime, the predominant damage mechanism is nucleation of fatigue cracks in the vicinity of oxide inclusions, whereby mean value and scatter in fatigue limit are directly correlated to the dimension of these inclusions.  相似文献   

17.
《Strain》2018,54(1)
The crystallinity of stretched crystallizable rubbers is classically investigated using X‐ray diffraction. In this study, we propose a new method based on temperature measurement and quantitative calorimetry to determine rubber crystallinity during mechanical tests. For that purpose, heat power density are first determined from temperature variation measurements and the heat diffusion equation. The increase in temperature due to strain‐induced crystallization is then deduced from the heat power density by subtracting the part due to elastic couplings. The heat capacity, the density, and the enthalpy of fusion are finally used to calculate the crystallinity from the temperature variations due to strain‐induced crystallization. The characterization of the stress–strain relationship and the non‐entropic contributions to rubber elasticity is not required. This alternative crystallinity measurement method is therefore a user‐friendly measurement technique, which is well adapted in most of the mechanical tests carried out with conventional testing machines. It opens numerous perspectives in terms of high speed and full crystallinity field measurements.  相似文献   

18.
The strengths of plastic-coated glass fibres have been measured at liquid nitrogen temperatures using a bending technique. The method yields data on the strengths of coated optical fibres in the absence of stress corrosion. Pristine strengths corresponding to a breaking strain of 21% have been measured for silica fibre and 12% for sodium borosilicate compound glass fibre, corrected to 50 cm gauge length. The low temperature strength was found to be directly related to the tensile strength measured at room temperature, and the relationship was valid for a variety of glass compositions with differing amounts of surface damage.  相似文献   

19.
聚合物光纤网络器件及其通信链路系统   总被引:2,自引:1,他引:1  
马辉  张永生  王茁  张涛  王东  明海 《光电工程》2004,31(7):28-30
通过自行研制的聚合物光纤波长转换器和集线器,实现了石英光纤传输介质到聚合物光纤传输介质的工作波长转换,以及多路聚合物光纤传输信息的交换和局域网信息的全聚合物光纤传输。系统测试结果显示,数据交换传输速率达到100Mbps,通信眼图清晰。链路系统传输信号随传输距离成指数衰减,与聚合物光纤的光强衰减规律一致。用商用的发射接收器测得传输距离达到60m以上。聚合物光纤弯曲半径为25mm时,给系统接收端接收信号强度带来0.1~0.4dB的衰减,表明聚合物光纤弯曲对链路系统工作影响较小。  相似文献   

20.
In this work the properties of Carbon/Carbon‐material are investigated under quasi‐static compression and model‐like characterized. The investigated material was produced by pyrolysis of a Carbon/Carbon – composite of bidirectionally reinforced fabric layers. For the compression tests, a device to prevent additional bending stress was made. The stress‐strain behaviour of this material has been reproduced in various publications. This will be discussed on the fracture behaviour and compared the experimental results from the compression tests with the characteristics of tensile and shear tests. The different compression and tensile properties of stiffness, poisson and strength were assessed. Differences between the tensile and compression behaviour resulting from on‐axis tests by micro buckling and crack closure and off‐axis experiments by superimposed pressure normal stresses that lead to increased shear friction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号