首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lorentz correction is used to correct the intensities of X‐ray scattering of single crystal diffractometry in order to recalculate intensities to obtain structure factors. This correction reduces the intensities to zero at zero diffraction angle. Small angle scattering is used to study the dimensions of heterogeneities in polymeric materials. The scattering intensities near to zero scattering angle originate partly from periodic systems (reciprocal lattice) and partly from dispersed particle systems. Periodic systems should result in individual Gaussian or Lorentzian peaks with the position of a peak maximum depending on the length of the periodicity. Particle scattering results in a Gaussian peak centred at zero scattering angle. The effect of the Lorentz correction on the interpretation of small angle X‐ray scattering data is shown in the case of some semicrystalline polyethylenes (high density, linear low density, and low molecular weight waxy polyethylenes). The data are compared with those for amorphous block copolymers (styrene/butadiene) in which there is a periodic system with homogeneous lamellar thickness. Lorentz correction destroys the characteristics of the particle scattering and can be applied only for periodic systems. It should not be used to produce a peak on scattering data which does not show periodicity (peaks) without correction. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2300–2308, 2001  相似文献   

2.
The solvent processing of polymers is significantly constrained by polymer chain crystallinity. A phenomenological model is developed here that captures the phenomena governing the dissolution of semicrystalline polymers, for example, solvent penetration, transformation from crystalline to amorphous domains, specimen swelling, and polymer chain untangling. The model is validated for the case of cellulose fiber swelling and dissolution in an ionic liquid. A parametric sensitivity analysis is performed to assess the impact of decrystallization rate constant, disentanglement rate, concentration dependence of solvent diffusivity, disentanglement threshold, and thickness of external boundary layer on the swelling and dissolution of semicrystalline polymer fibers. The rate of dissolution after attaining maximum swelling is found to be mainly controlled by the polymer chain disentanglement rate. The insights obtained from this study would facilitate the design of efficient solvent systems and processing conditions for the dissolution of semicrystalline polymers such as cellulose, polyglycolic acid, and polyesters. © 2017 American Institute of Chemical Engineers AIChE J, 63: 1368–1383, 2017  相似文献   

3.
Paper is a networked structure of randomly bonded fibers. These fibers are composed of naturally occurring polymeric materials (cellulose, hemicelluloses, and lignin). Polymeric materials such as these exhibit viscoelastic deformation, and as a result, creep under an applied stress. A rheological model has been developed to predict the tensile creep behavior of paper under a uni‐axial stress. Specifically, the focus of this model was to predict creep strain using only stress, time, and efficiency factor (effectiveness of bonding). This rheological model offers insight into creep behavior (drawing from molecular creep mechanisms) and separates total strain from creep into initial elastic, primary creep, and secondary creep components. Interfiber bonding is taken into account through the use of an efficiency factor which represents how effectively bonding is distributing load throughout the fiber network of the paper. As a result, this model makes it possible to predict the creep behavior of paper over a range of bonding levels, induced by mechanical changes in bonded area or chemical modification of specific bond strength, using creep data from paper at any single level of bonding. This utility is retained as long as the fibers and the orientation of the fibers are not changed. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

4.
Lorentz correction is used to correct the intensities of X‐ray scattering of single‐crystal diffractometry in order to recalculate intensities to obtain structure factors. This correction reduces the intensities to zero at zero diffraction angle. Small‐angle scattering is used to study the dimensions of heterogeneities in polymeric materials. The scattering intensities at a near to zero scattering angle originate partly from periodic systems (reciprocal lattice) and partly from dispersed particle systems. Periodic systems should result in individual Gaussian or Lorentzian peaks with the position of a peak maximum depending on the length of the periodicity. Particle scattering results in a Gaussian peak centered at zero scattering angle. The effect of the Lorentz correction on the interpretation of small‐angle X‐ray scattering data is shown for some semicrystalline polyethylenes (high‐density, linear low‐density, and low‐molecular‐weight waxy polyethylenes). The data are compared to those for amorphous block copolymers (styrene–butadiene), in which there is a periodic system with homogeneous lamellar thickness. Lorentz correction destroys the characteristics of the particle scattering and can be applied only for periodic systems. It should not be used to produce a peak on scattering data, which do not show periodicity (peaks) without correction. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 358–366, 2001  相似文献   

5.
6.
Temperature modulated differential scanning calorimetry (TMDSC), variable heating rate DSC, and tapping atomic force microscopy (AFM) were used to study semi-crystalline liquid crystalline polymers (LCPs). Main chain LCPs included a random copolyester (Vectra® A950) and an azomethine alternating copolymer. For the azomethine LCP the TMDSC non-reversing signal detected broad exothermic transitions associated with melting and recrystallization as the slow DSC heating scan induced surprisingly large morphological changes. Non-isothermally crystallized Vectra® and some isothermally crystallized samples at lower temperatures exhibited different levels of DSC scan induced crystal reorganization. Such crystal metastability was also studied by variable heating rate DSC and an independent technique for estimating the melting point at very rapid heating rates. The TMDSC characterization of the scan induced crystal perfection in Vectra® was substantially different than for the other polymers studied. In most cases even though crystal perfection was occurring, no clear exotherm was detected in the non-reversing signal. High temperature annealing for long times resulted in degrees of crystal perfection which could be studied by DSC with minimal scan induced reorganization. High resolution tapping AFM was used to elucidate details of crystal morphology for mechanically oriented and non-oriented Vectra® before and after annealing. Structures resembling lamellae were found to be oriented perpendicular to the chain direction in the oriented Vectra®. In the non-oriented film broad and sometimes curved ‘lamellae’ were detected. They were about 1000 nm long and between 20 and 35 nm wide, with the width increasing slightly as a function of increased annealing time at 260 °C melt crystallization conditions. Substructure of the lamellae in both oriented and non-oriented Vectra® consisted of smaller stacked crystallites which are detected by AFM studies of these surfaces.  相似文献   

7.
A new methodology for modeling the creep behavior of polymers at different temperatures, by using phenomenological constitutive models, is presented in this paper. The viscoelastic model is given by a combination of springs and dashpots and is used to describe the nonlinear response of polymers, and the viscoplastic formulation is given by a power-law equation. The approach proposed in this work is based on building master curves for different stress levels, and finding the dependency of the constitutive parameters with the temperature. After fitting the equations to the tensile creep tests at different temperatures, the final constitutive formulation is capable of modeling the behavior of polymers at any stress level and temperatures. Poly methyl metacrytale (PMMA) was used to investigate the accuracy of this proposal, and the results showed good agreement with the experimental data.  相似文献   

8.
Novel side-chain liquid crystalline (LC) ionomers containing d-metals Co(II) and Ni(II) were synthesized and characterized. Both families of the ionomers are characterized by the same influence of charged group content in polymer on their phase behavior. The incorporation of 2-3 mol% of metal ions in the nematic polymer matrix leads to the induction of SmA phase and rise in the clearing point. The peculiarity of their phase behavior in comparison with the earlier investigated LC ionomers with alkaline or alkali-earth metals is the full destruction of the mesophase at the concentration of d-metal higher than 12 mol%. This phenomenon was associated with the well-known ability of the transition metal ions to form various complexes that, in the case of LC ionomers, can negatively influence the ordering of the side mesogenic groups. The proposed structure of the LC ionomers is discussed in comparison with the metallomesogenic polymer systems.  相似文献   

9.
A zinc salt of a lightly sulfonated (4.5 mol %) polystyrene ionomer was used to compatibilize a 3/1 (w/w) blend of syndiotactic polystyrene and a wholly aromatic thermotropic liquid‐crystalline polymer (TLCP). The addition of the ionomer significantly reduced the dispersed TLCP domain size and improved the tensile strength, ultimate elongation, and flexural toughness of the blend. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 564–568, 2003  相似文献   

10.
A mathematical model was developed to predict the drying mechanism of semicrystalline polymers involving multiple solvents. Since drying of semicrystalline polymers can be accompanied by changes in polymer degree of crystallinity, the model integrates crystallization kinetics and the Vrentas-Duda diffusion model to provide a better understanding of the mechanism. The model considers the effect of external conditions such as temperature, film shrinkage and diffusion and evaporation of multiple solvents during drying. Poly(vinyl alcohol) (PVA)/water/methanol was chosen as a test system. The drying kinetics of PVA films swollen in water and methanol were investigated using gravimetric techniques. The model predicts that higher temperatures, lower film thicknesses and lower methanol to water ratios increase the drying rate. The model predictions were compared with experimental data and showed good agreement.  相似文献   

11.
Various liquid crystalline and photoactive azobenzene monomers were synthesized and attached to copoly(methyl methacrylate‐glycidyl methacrylate) [copoly (MMA‐GMA)] to get high molecular weight side chain liquid crystalline (LC)/photoactive copolymers. Further, spacers are generated in situ and reactive groups are obtained after the modification. All monomers and polymers were thoroughly characterized by FTIR, 1H and 13C NMR, UV‐VIS spectrophotometry, gel permeation chromatography, thermogravimetric analysis, differential scanning calorimetry, and polarized optical microscopy. All side chain LC polymers showed higher thermal stability than that of copoly(MMA‐GMA). Three LC and one azo monomer exhibited characteristic nematic mesophase where as one LC monomer has shown nematic and sanded smectic‐A texture. The rate of trans‐cis isomerization of polymer was lower than that of the monomer and both monomers and polymers showed slow back isomerization. Present approach offers convenient way to synthesize high/desired molecular weight photoactive LC polymers. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
Several novel chiral side-chain liquid crystalline (LC) polysiloxane resins containing epoxy groups and mesogenic components have been graft copolymerized by a one-step hydrosilylation reaction with poly(methylhydrogeno)siloxane, an epoxy monomer 2-(allyloxymethyl)oxirane, and chiral fluorinated liquid-crystalline monomers 4′-(4-(allyloxy)benzoyloxy)biphenyl-4-yl 6-(perfluorooctanoyloxy)hexahydrofuro[3,2-b]furan-3-yl adipate and 4′-(4-(undec-10-enoyloxy)benzoyloxy)biphenyl-4-yl 6-(perfluorooctanoyloxy)hexahydrofuro[3,2-b]furan-3-yl adipate. The synthesized epoxy resins are cured using 4,4′-diaminodiphenyl-methane in mesophase state under a magnetic field to obtain crosslinked oriented elastomers. The chemical structures, LC properties and surface morphology of the monomers, the resins and the liquid crystalline elastomers (LCEs) are characterized by use of various experimental techniques such as FTIR, 1H NMR, EA, TGA, DSC, POM, and X-ray measurements. The mesomorphic properties of the synthesized resins and corresponding oriented elastomers are influenced by the terminal perfluorocarbon chains components effectively. The resins show chiral nematic and chiral smectic C phases (), and are frozen in their corresponding oriented elastomers. The LC phases are verified by X-ray measurements, and the orientational order parameters of the oriented LCEs are calculated as well.  相似文献   

13.
The interfacial properties of polymer blends of the engineering thermoplastics (TPs) polycarbonate (PC) and polyethersulfone (PES) with thermotropic liquid crystalline polymers (TLCPs) were studied using FTIR and DSC. The TLCP/TP blend systems were mainly immiscible. The viscosity properties of the TLCP/TP blends were analysed. The mechanism of the viscosity variation of the blends is discussed. Based on the assumptions given in this paper, a reasoned theoretical formula of the blend viscosity is derived to express the viscosity reduction of the TLCP/TP blends.  相似文献   

14.
A new series of liquid crystalline polymers containing aromatic triad ester mesogen and 1,1′‐disubstituted ferrocene as a nonmesogenic unit along with polymethylene spacer was synthesized. The polymer was synthesized by a room temperature polycondensation reaction between bis(4‐chloroformyl phenyloxy alkyl ferrocene dicarboxylate) and quinol. The alkyl groups have been varied by an even number of methylene groups with a range from two to ten groups. All the polymers were found to possess liquid crystalline properties. The identification of the mesophase is more transparent with an increase in the spacer. The thermal characteristics were studied using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The results reveal that the thermal stability of the polymers was decreased with increasing spacer length. The Tg, Tm, and Ti of the polymers decreased with increasing methylene groups. The incorporation of the ferrocene moiety also has a considerable effect on the glass transition temperature. The char yield of the polymer decreases with an increasing methylene chain length. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3494–3501, 2002  相似文献   

15.
The solubility of liquid molecules in glassy polymers has been considered by using the general results of the Non‐Equilibrium Thermodynamics of Glassy Polymers (NET‐GP), which proved successful to calculate solubility isotherms of gases in glassy polymers for rather different situations, including polymer blends, mixed gases, and mixed matrices. It is shown that the existing model is suitable also for liquid penetrants in a glassy phase: water and ethanol sorption in polycarbonate (PC) and water sorption in polysulfone (PSf) have been examined as examples. The model's ability to predict the solubility from both liquid and vapor phases was tested successfully, using the same values of the parameters for both phases. In the case of PC, the model was also applied to calculate successfully the solubility of liquid water at different temperatures from 25 to 130°C, with a single value of the energetic binary parameter. © 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

16.
Two acrylate monomers containing both mesogenic biphenyl group and photoreactive cinnamoyl group as well as different length of flexible spacers (i.e., n‐[4′‐(n‐cinnamoyloxyalkoxy)biphenyl‐4‐yloxy]alkyl acrylate, n = 4 (A4OO4C) and 6 (A6OO6C)) were synthesized for the first time. Their corresponding polymers (i.e., PA4OO4C and PA6OO6C) were obtained by free radical polymerization using AIBN as an initiator. The monomer A4OO4C showed smectic liquid crystalline phase and a clear fan texture was observed under optical polarizing microscope. However, no liquid crystalline phase was found for A6OO6C. In contrast, PA4OO4C showed no liquid crystalline phase while PA6OO6C showed a clear nematic schlieren texture during the cooling process. The optical polarized microscope of E5 cast on the top of the polymer film also showed the alignment. Furthermore, the irradiation of the polymer films by LP‐UV light led to the cycloaddition of the cinnamoyl groups, resulting in the simultaneous alignment of the biphenyl groups. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4565–4572, 2006  相似文献   

17.
M.S. Sefton  H.J. Coles 《Polymer》1985,26(9):1319-1324
The static and dynamic properties of solutions of a side chain polysiloxane liquid crystal polymer have been studied in a cyanobiphenyl nematic host as a function of concentration and temperature. Refractive index measurements were carried out on aligned samples and the data used to determine the macroscopic order parameter, S, using Haller's method. Photon correlation spectroscopy has been used to measure (k22γ1) for the pure nematic solvent and the solutions. From these measurements it appears that the static properties vary slowly and linearly with increasing polymer concentration whilst the dynamic or viscoelastic properties change markedly. This change has been attributed to γ1, the twist viscosity, and the results have been discussed in terms of the function of the siloxane polymer backbone.  相似文献   

18.
By applying a novel thin film polymerization technique, X-ray photoelectron spectroscopy (XPS), and the Lifshitz-van der Waals acid-base (LWAB) theory, we have determined the time evolution of surface chemistry and surface free energy during the polymerization of liquid crystalline poly(p-oxybenzoate/2,6-oxynaphthoate) at a molar ratio of 50/50. The surface free energy components of these main-chain liquid crystalline copolyesters were calculated from contact angle measurements using a Ramé-Hart goniometer and a three-liquid procedure (water, glycerol, and diiodomethane). The experimental data suggest that the Lewis base parameter (y-) during thin film polymerization decreases rapidly with the progress of polymerization, while the Lewis acid parameter (γ+) and the Lifshitz-van der Waals parameter (γLW) are almost invariant. The surface roughness data measured by atomic force microscopy (AFM) suggested that the increase in water contact angle (or the decrease in y-) was not caused by the change in surface roughness, but by the change in surface chemistry, i.e. due to the reaction of acetoxy and carboxy groups to release acetic acid during the polymerization reaction. In addition, the XPS results coincide with our previous Fourier transform infrared spectroscopy results showing that the condensation polymerization is much faster in the beginning than in the later stages. Consequently, the decrease in y- in the early stages of the polymerization is well explained.  相似文献   

19.
A series of combined liquid crystalline poly(bis‐4,4′‐oxy‐α‐methylstilbene‐4‐substituted (X) phenylazo‐4′‐phenyloxydecylphosphate ester)s bearing photoreactive mesogenic units were synthesized. FTIR and 1H NMR spectroscopy confirmed the structures of these polymers. The inherent viscosities of the polymers were found to be in the range 0.45–0.65 dL g?1. Polarizing optical microscopy (POM) exhibited birefringent liquid crystalline melt properties. The thermal properties of all of the polymers were studied by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The photochemical properties of these polymers were studied by UV‐visible and fluorescence spectroscopy. The influence of the photoinduced EZ (transcis) isomerization of the various terminal substituents of the side‐chain azobenzenes was investigated. The kinetics of the photoisomerization process reveal the switching times for the conversion between the trans‐ and cis‐ forms of the azobenzene units. The photo‐optical properties of these polymers exhibited layered smectic phases and showed good photoinduced properties in their mesomorphic states. Copyright © 2005 Society of Chemical Industry  相似文献   

20.
Liquid crystalline polymers (LCPs) have been synthesized from polyethylene terephthalate (PET) and 4‐acetoxybenzoic acid (OB) through melt step‐growth polymerization. The presence of liquid crystalline texture is first examined using optical polarizing microscopy. The thermal durability of the developed systems is studied through thermogravimetric analysis. The kinetics of the polymerization processes is analyzed. The effectiveness of three catalysts commonly used in polyesterification is investigated. The effect of reaction temperature is also examined. The progress of polycondensation reactions over time takes a nonlinear behavior of slight sigmoidal shape, irrespective of whether or not the reaction is catalyzed. Simple second and third order equations, along with a nonlinear model, are used to determine the kinetic parameters characterizing these reactions. The rate of reaction is enhanced when the reaction temperature is increased. Overall, second‐order kinetics well describes the polymerization reactions when the data set is divided into two regions. Antimony trioxide induces a more visible enhancement to the rate of reaction, compared to zinc acetate and sodium acetate. The presence of a catalyst generally increases the reaction activation energy. This indicates that entropy factors outweigh the increase in activation energy and drive the catalyzed reactions to completion. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号