首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The devulcanization of sulfur‐cured unfilled butadiene rubber (BR) with a grooved‐barrel ultrasonic reactor under various processing conditions was carried out. The experiments indicated that BR had a narrow devulcanization window. Outside this window, significant degradation or no devulcanization occurred. Gel permeation chromatography (GPC) measurements were carried out with the sol part of virgin and devulcanized samples to study the breakdown of the polymeric chains. The GPC data showed a significant molecular weight reduction and a broadening of the molecular weight distribution upon devulcanization, indicating that the devulcanization and degradation of BR occurred simultaneously. The rheological properties showed that devulcanized BR was more elastic than the virgin gum. The vulcanizates of the blends of virgin and devulcanized BR showed a considerable enhancement of the mechanical properties. The thermal behaviors of the virgin and devulcanized BR were found to be different. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1166–1174, 2004  相似文献   

2.
The ultrasonic devulcanization of sulfur‐cured natural rubber (NR)/styrene–butadiene rubber (SBR) blends was studied with the goal of understanding the devulcanization of rubber vulcanizates in which two networks of different natures were present. Also, similarities and differences in the devulcanization behaviors of NR, SBR, and their blends were found. During the devulcanization of cured NR/SBR blends, we observed that, as for NR, the ultrasonic power consumption for 75/25 and 50/50 (w/w) NR/SBR blends passed through a maximum at 7.5 μm. For SBR and 25/75 (w/w) NR/SBR blends, the power consumption increased with increasing ultrasonic amplitude. The higher power consumption led to a higher degree of devulcanization. The crosslink densities of the devulcanized 25/75, 50/50, and 75/25 (w/w) NR/SBR blends were lower than those of the devulcanized NR and SBR, possibly because of the reduced degree of unsaturation. The tensile properties of the revulcanized blends were lower than those of the virgin vulcanized blends. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 160–168, 2002  相似文献   

3.
The devulcanization of resin‐cured unfilled butyl rubber with a grooved‐barrel ultrasonic reactor under various processing conditions was carried out. The experiments indicated that, because of the lower unsaturation and good thermal stability of butyl rubber, its devulcanization could be successfully accomplished only under severe ultrasonic‐treatment conditions. Gel permeation chromatography measurements were carried out for the virgin gum and sol part of devulcanized samples to study the changes in the rubber network during the devulcanization process. The obtained data showed a significant molecular weight reduction and a broadening of the molecular weight distribution upon devulcanization, which indicated that the devulcanization and degradation of butyl rubber occurred simultaneously. The rheological properties showed that devulcanized butyl rubber was more elastic than the virgin gum. The vulcanizates of the devulcanized butyl rubber showed mechanical properties comparable to those of the virgin vulcanizate. The thermal behaviors of the virgin and devulcanized butyl rubber were different and were correlated to the double‐bond content. The structural characteristics of the devulcanized butyl rubber were simulated with the Dobson–Gordon theory of rubber network statistics. A fairly good agreement between the experimental data and theoretical prediction was achieved. The simulation of devulcanized butyl rubber indicated that the rate of crosslink rupture was much higher than that of the main chain. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1316–1325, 2004  相似文献   

4.
The continuous ultrasonic devulcanization of natural rubber (NR) filled with various concentrations of carbon black (CB) indicated a minimum of crosslink density and gel fraction at an intermediate amplitude, which is independent of CB content. An attempt was made to improve the efficiency of devulcanization by use of various chemicals (1,3 Diphenylguanidine, 2‐Mercaptobenzothiazole, Thianaphthene). However, these experiments did not indicate any improvement in comparison with devulcanization without chemicals. An idea of adding fresh CB into devulcanized compound, which has been shown to improve mechanical properties in the case of styrene–butadiene rubber (SBR), was tested in the present study for CB filled NR compound. The obtained result indicated that an addition of fresh CB to devulcanized CB‐filled NR did not lead to an improvement in mechanical properties upon revulcanization. The revulcanization recipe was optimized to improve the mechanical properties of revulcanized CB‐filled NR vulcanizates. It was found that CB‐filled NR upon revulcanization retained its strain‐induced cystallizability with the tensile strength and elongation at break at about 50 and 70% level of the virgin vulcanizates. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 2340–2348, 2001  相似文献   

5.
13C NMR solids spectroscopy and transverse relaxation, and 1H relaxation and pulsed‐gradient spin‐echo self‐diffusion measurements at 70 °C were used to study molecular and segmental mobilities in natural rubber before and after sulfur crosslinking, and after subsequent devulcanization using intense ultrasound. NMR relaxation does not clearly distinguish between entangled and crosslinked network mobility, but unentangled sol and oligomeric species are separable within the longer T2 decay components. Ultrasound reactor settings affect the amount of extractable sol generated. Some two‐thirds of the sol is entangled, with number‐average molecular weights (Mn) above 10 000 g mol?1. Samples also contain near 2 wt% of inert light species (Mn < 400 g mol?1); ultrasound is relatively ineffective in producing additional oligomeric material. All proton mobilities increase as more sol is produced, but 13C relaxation, reflecting intramolecular effects, indicates a slight decrease in backbone mobility. In contrast with other rubbers, in natural rubber, neither the glass transition nor the sol diffusion rate is greatly affected by the extent of ultrasound exposure. Comparisons with previous similar work of this laboratory, particularly styrene‐butadiene rubber, are useful in confirming the molecular mechanisms involved. Copyright © 2007 Society of Chemical Industry  相似文献   

6.
研究了热空气老化和真空老化对NR硫化胶结构和性能的影响,采用化学探测剂脱硫的方法测定了老化过程中NR硫化胶交联密度及交联键分布变化的情况,同时测定了硫化胶的力学性能和动态性能随时间变化的情况。结果显示,热空气老化使硫化胶的交联密度增加,但力学性能损失严重,原因是主链氧化断裂。真空老化使NR硫化胶交联密度略微降低,但力学性能保持良好,类似于硫化返原。热空气老化使NR硫化胶的动态性能改善,而真空老化后  相似文献   

7.
The comparative study of the continuous ultrasonic devulcanization of various unfilled rubbers [natural rubber, styrene–butadiene rubber (SBR), ethylene–propylene–diene rubber (EPDM)] is carried out by means of a ultrasonic reactor. The power consumption, gel fraction, crosslink density, cure behavior, and physical properties of devulcanized rubbers were measured. The glass transition temperatures of virgin, vulcanized, and devulcanized rubbers were determined in order to characterize the difference in the mobility of rubber molecules for each rubber before and after devulcanization. Thermogravimetric analysis was also used to determine thermal stability of the various rubbers. A unique correlation between gel fraction and crosslink density indicated significant differences in the efficiency of devulcanization of various rubbers. Under certain devulcanization conditions, the mechanical properties of revulcanized SBR and EPDM rubbers were found to improve compared to those of the original rubbers. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 434–441, 2003  相似文献   

8.
This investigation deals with the recycling of polyurethane rubber by the application of high‐power ultrasound in a continuous ultrasonic coaxial reactor. The cured rubber has been devulcanized at various feed rates and various gap sizes and then revulcanized again with certain adjustments in the curing recipe. The die pressure and the total power consumption have been recorded as a function of the processing conditions. The rheological and mechanical properties, hardness, gel fraction, and crosslink density of the original, devulcanized, and revulcanized samples have been measured and compared in an attempt to determine the optimum condition for devulcanization. Gel permeation chromatography (GPC) has been carried out with the sol part of the devulcanized samples to study the devulcanization and degradation. The results show that at low flow rates and narrow gaps, the material is degraded very quickly and, therefore, exhibits very poor mechanical properties. However, increasing the feed rate results in an improvement of the mechanical properties. Measured values of the crosslink densities and gel fractions indicate the processing conditions under which greater devulcanization and degradation of the samples take place. The lower molecular weights of the sol, extracted from the devulcanized samples, obtained in the GPC experiments in comparison with polyurethane gum indicate a breakdown of the polymeric chains as a result of devulcanization. The devulcanized samples show a higher activation energy of viscous flow, possibly because of the formation of branched structures. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 980–989, 2003  相似文献   

9.
Sulfur‐cured filled natural rubber (NR) is successfully reclaimed by using a renewable resource material (RRM) and diallyl disulfide (DADS), which is the major constituent of RRM. Reclaiming of NR vulcanizate was carried out at 60°C for 35 min in an open two‐roll mixing mill. Evaluation of the properties of NR reclaim was carried out by mixing it with virgin rubber in various proportions. The cure characteristics and mechanical properties of the virgin NR/ reclaim NR blend were studied. With increase in the proportion of reclaim rubber (RR) in virgin NR/ reclaim NR blend scorch time and optimum cure time decrease. To increase scorch time N‐cyclohexylthiophthalimide as prevulcanization inhibitor (PVI) was added in NR/RR (50/50) blend. It was found that use of 40% NR reclaim with virgin rubber resulted 83% retention of tensile strength of that of the virgin NR vulcanizate. Effect of carbon black loading was studied in NR/RR (50/50) blends. Tensile properties and swelling value of different NR/RR blends were evaluated before and after aging. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 1493–1502, 2000  相似文献   

10.
Gum and black‐filled vulcanizates having various crosslink densities were prepared from 2 types of rubber, namely, deproteinized natural rubber (DPNR) and synthetic cis‐1, 4 polyisoprene vulcanizates (IR). Their mechanical properties, such as tensile strength, tear strength, abrasion loss, and heat buildup resistance, at various crosslink densities as well as at similar optimum crosslink density were compared. For both gum and black‐filled systems, IR possessed a higher crosslink density than that of DPNR at a fixed curative content. Tensile and tear strength of all vulcanizates passed through a maximum with increasing crosslink density. For gum vulcanizates, tensile and tear strengths of DPNR and IR below the maximum were not much different. However, IR had a narrower tear strength peak relative to DPNR. At a comparable optimum crosslink density, DPNR exhibited higher tensile strength and crack growth resistance than IR. For black‐filled vulcanizates, tensile and tear strengths, and heat buildup resistance of DPNR and IR at a given crosslink density were similar. The results revealed that the properties of gum samples were more dependent upon crosslink density than the black‐filled ones because the reinforcement by carbon black overshadowed the intrinsic properties of the rubbers. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1139–1144, 2005  相似文献   

11.
The effects of addition of two chemical blowing agents in cellular rubber blend of natural rubber (NR) and styrene‐butadiene rubber (SBR) at a fixed blend ratio of 1 : 1 on cure characteristics, and mechanical and morphological properties were invesigated. The chemical blowing agents used in this work were Oxybis (benzene sulfonyl) hydrazide (OBSH) and Azo dicarbonamide (ADC). Three different fillers, fly ash (FA) particles, precipitated silica, carbon black (CB) at their optimum concentrations of 40 phr were used, the FA and silica particles being chemically treated by bis‐(3‐triethoxysilylpropyl) tetrasulphide. The results suggested that the overall cure time decreased with OBSH and ADC contents. The OBSH was more effective in cure‐acceleration of the NR/SBR blend than the ADC. The NR/SBR vulcanized foams produced by OBSH and ADC agents had closed‐cell structures. The specific density and mechanical properties of the blend tended to decrease with increasing blowing agent content. The CB gave NR/SBR foams with smaller cell size, better cell dispersion, and higher mechanical properties than the precipitated silica and FA particles. The heat ageing and weathering resulted in an increase in tensile modulus and hardness, but lowered the tensile strength, ultimate elongation and tear strength. The elastic recovery for cellular NR/SBR vulcanizates with FA was superior to that with CB and silica, the elastic recovery of the blends decreasing with blowing agent content. Resilience property was improved by the presence of gas phases. The optimum concentration of OBSH and ADC to be used for NR/SBR vulcanizates was 4 phr. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
有机蒙脱土对天然橡胶/丁苯橡胶的补强及增容作用   总被引:1,自引:0,他引:1  
采用机械混炼法制备了天然橡胶(NR)/丁苯橡胶(SBR)/有机蒙脱土(OMMT)纳米复合材料,采用TEM和XRD对复合材料的亚微观结构进行了表征,并对复合材料的表观交联密度、静态力学性能、动态力学性能和硫化热效应进行了研究。结果表明,复合材料为剥离型纳米复合材料;OMMT能够明显提高纳米复合材料的交联密度和静态力学性能;OMMT导致NR/SBR共混胶动态损耗因子降低,并且能够促使NR和SBR玻璃化转变温度更为接近,起到了增容作用;OMMT实现了NR和SBR两相的同步硫化。  相似文献   

13.
Dynamically cured 60/40 NR/HDPE blends with various amounts of phenolic curative were prepared in an internal mixer at 160°C. A simple blend (i.e., the blend without curative) was also prepared using the same materials and blend proportion for comparison purposes. Mechanical, dynamic, and morphological properties; swelling resistance and crosslink density of the blends were investigated. It was found that the thermoplastic vulcanizates (TPVs) gave superior mechanical and dynamic properties than the simple blend. Furthermore, the mechanical properties in terms of elongation at break, modulus and tensile strength and elastic response in dynamic test in terms of storage modulus increased with increased loading amount of the curative. The complex viscosity also increased but the tan δ and tension set decreased with increased loading level of the curative. The crosslink density of the TPVs was estimated based on the elastic shear modulus. It was found that the crosslink density of the blends increased with increased loading levels of the curative while the degree of swelling decreased. This correlated well with the trend of mechanical and dynamic properties. SEM micrographs were used to confirm the level of mechanical and dynamic properties. It was found that the simple blend at a given blend ratio exhibited co‐continuous phase morphology. However, the TPVs showed micron scale of vulcanized rubber domains dispersed in a continuous HDPE matrix. The size of vulcanized rubber domains decreased with increasing amounts of the curative. This led to greater interfacial adhesion between the phase and hence superior mechanical and dynamic properties. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
Thermoplastic vulcanizates (TPVs) from natural rubber (NR) and polypropylene (PP) were studied, prepared by dynamic vulcanization during melt mixing, using various peroxides to crosslink the rubber phase. The objective was to find a proper balance between degree of crosslinking of the rubber and degradation of the PP‐phase, and the tendency of the peroxide to form smelly by‐products, in particular acetophenone. Four types of peroxides were investigated: 2,5‐dimethyl‐2,5‐di(tert‐butyl‐peroxy) hexyne‐3 (DTBPHY), 2,5‐dimethyl‐2,5‐di(tert‐butyl‐peroxy) hexane (DTBPH), di(tert‐butylperoxyisopropyl) benzene (DTBPIB), and dicumyl peroxide (DCP), at two mixing temperatures: 160 and 180°C for a 60/40 NR/PP TPV. The maximum and final mixing torques are clearly related to the intrinsic decomposition temperature of the particular peroxide used, where DCP and DTBPIB turn out to be effective at 160°C, whereas the other two require a higher temperature of 180°C. The best mechanical properties, tensile strength, elongation at break and compression set are obtained at lower mixing temperature with DCP and DTBPIB, presumably due to less degradation of the NR and PP. Unfortunately, these two peroxides form more smelly by‐products than DTBPHY and DTBPH. Dependent on the requirements of the pertinent application, a balanced selection needs to be made between the various factors involved to obtain an optimal product performance of these NR/PP TPVs. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

15.
The effects of crosslink structures on the dynamic mechanical properties (DMPs) of unfilled and carbon black N330‐filled natural rubber (NR) vulcanizates cured with conventional (CV), semiefficient (SEV), and efficient (EV) cure systems and having about the same total crosslink densities were investigated before and after aerobic and anaerobic aging at 100°C. The three unfilled NR vulcanizates cured with the CV, SEV, and EV systems had about the same mechanical loss factor (tan δ) values at about 0°C but showed some apparent differences in the tan δ values in the order EV > SEV > CV at relatively high temperatures of 40–80°C before aging. However, N330‐filled NR vulcanizates gave higher tan δ values than the unfilled vulcanizates and showed little effect of the crosslink types on the tan δ at different temperatures over the glass‐transition temperature (Tg) before aging. Aerobic heat aging increased the Tg and tan δ values of the vulcanizates over a wide range of temperatures from ?80 to 90°C that was mainly due to the changes in the total density and types of crosslinks. The unfilled vulcanizates cured with the CV system showed the greatest change in DMP because of their poor resistance to heat aging. Aerobic heat aging of NR vulcanizates caused a more significant change in the DMP than anaerobic heat aging because of the dominant effect of the oxidative degradation during aerobic heat aging on the main‐chain structure, crosslink structures, and DMPs of the vulcanizates. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 710–718, 2001  相似文献   

16.
孙成  沈梅  辛振祥 《弹性体》2014,(2):35-39
研究了204酚醛树脂(204树脂)和古马隆树脂在再生橡胶中的应用。测定了2种树脂对再生橡胶的交联密度、硫化特性、门尼粘度、力学性能、动态力学性能的影响。结果表明,2种树脂均可以有效地降低再生橡胶的门尼粘度;204树脂的固化作用可以提高硫化胶的整体交联密度,有利于再生橡胶力学性能的提高,当其用量为3phr时达到最佳效果;古马隆树脂有利于再生橡胶断裂伸长率的提高,当其用量为4.5phr时达到最佳效果。  相似文献   

17.
The influence of rubber devulcanization by microwaves in the reversion behavior is still modestly explored in the literature. The reversion occurs due to thermal degradation of unstable crosslinkings formed during the vulcanization process. This phenomenon results in poor final mechanical properties of the artifacts. In this work, some formulations based on natural rubber (NR) with the incorporation of NR devulcanized by microwaves at different exposure times to the microwaves were vulcanized by compression molding at the same temperature and time used for the study of their vulcanization characteristics, in order to correlate the properties obtained and understand the influence of the reversion on the mechanical properties. The results showed that levels of devulcanization/degradation of the recycled phase, as well as the additional heating time influenced on the behavior of reversion and, consequently, on the mechanical properties. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45325.  相似文献   

18.
The use of recycled rubber in preparation of acoustic absorbent materials will help to combat the existing environmental problems of both waste disposal and noise pollution. The focus of this work is to investigate the influence of mechanochemical pretreatment of ground tire rubber (GTR) on the acoustic absorption properties of polyurethane (PU)/GTR foamed composites. GTR subjected to pan‐milling could be mechanochemically devulcanized by breaking up the crosslinked structures through inducing fairly strong shearing and compressing forces. The significant increase in sol fraction of GTR confirmed the partial devulcanization during pan‐milling. Moreover, thermal gravimetric analysis indicated that rubber content in the soluble part of GTR was also remarkably increased. The devulcanization increased flexible chains of the GTR particles, which could help to improve damping properties as well as acoustic absorption ability of the PU/GTR foamed composites. Dynamic mechanical analysis and acoustic absorption measurements well confirmed this hypothesis. The loss modulus and sound absorption coefficient of PU/GTR foamed composites were remarkably increased through the mechanochemical pretreatment of GTR. The mechanochemical pretreatment also enhanced foamability of the composites as revealed by cell morphology. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
The submicrostructure of dynamically fatigued unfilled natural rubber vulcanizates was investigated by using scanning electron microscope (SEM) and atomic force microscope (AFM). AFM photographs showed the sample surface roughness became worse after tensile fatigue and the largest surface undulation was as twice that of the unfatigued sample. SEM photographs showed that many micropores of 101–102 nm, a sort of defect, occurred on the cross section of samples after tensile fatigue. The surface roughness became weaker and the size of the micropore was reduced to a few to dozens of nanometers with the addition of antiaging agent N‐(1,3‐dimethyl butyl butyl)‐N′‐phenyl‐p‐phenylene diamine (4020); furthermore, the mechanical properties and dynamic viscoelastic properties in the later period of fatigue changed much. E′ decreased greatly and tan δ increased obviously with the extension of fatigue. It indicated that 4020 was only effective in the early period of tensile fatigue.© 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
研究了天然鳞片石墨(FG)对天然橡胶/丁腈橡胶(NR/NBR)阻尼材料包括阻尼性能在内的综合性能的影响。结果表明:随着FG添加量由0份增加至15份,共混胶ML、MH、MH-ML均逐渐增大,焦烧时间ts1和工艺正硫化时间tc90变化不大。共混胶拉伸强度、撕裂强度先增加后减小,在FG添加量为10份时达到最大值,定伸应力和硬度明显增大,拉断伸长率和回弹性略有下降。滞后能量密度(HED)和阻尼系数增大。DMA表明,NR相损耗因子峰值逐渐减小,而NBR相损耗峰值逐渐增大,损耗模量E’’明显增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号