共查询到20条相似文献,搜索用时 15 毫秒
1.
Specimens of poly(vinylidene fluoride) (PVDF)–poly(methyl methacrylate) (PMMA)–polystyrene (PS) polyblends with different weight percentage ratios of the three polymers were prepared with the solution cast technique. The effect of γ irradiation on the Vicker's microhardness was studied. Among the three pure polymers, PVDF, PMMA, and PS, the γ irradiation imparted crosslinking in PVDF, thereby causing radiational hardening. In the cases of PMMA and PS, the effect of irradiation exhibited a predominance of both the scissioning and crosslinking processes in different ranges of doses. Moreover, at a dose of 5 Mrad, in both PMMA and PS, maximum radiational crosslinking was observed. The effect of γ irradiation seemed to stabilize beyond 15 Mrad in PVDF and beyond 20 Mrad in PMMA and PS. Microhardness measurements on ternary blends of PVDF, PMMA, and PS revealed that the blend with low contents of PMMA, that is, up to 5 wt %, yielded softening, whereas increasing the content of PMMA beyond 5 wt % produced a hardened material because of radiational crosslinking, and a higher content of PMMA in the blend facilitated this crosslinking. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3107–3111, 2004 相似文献
2.
Blends of head-to-head polystyrene and poly(2,6-dimethyl-1,4-phenylene oxide) were prepared and found to be miscible as judged by a single Tg. The measurements were carried out by d.s.c. and dilatometry. At high concentrations of PPO (> 80%) the mixture is on the threshold of incompatibility as indicated by the increase of the width of the transition step increase by d.s.c. and the increase of the free volume as calculated from dilatometric data. The thermal stability studies of head-to-head polystyrene-(HH-PS)-poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) blends by thermal volatilization analysis show two decomposition processes in the temperature range characteristic for both homopolymers. The temperature of the maximum rate of decomposition for PPO in the blend is slightly shifted towards lower temperatures as compared with pure PPO. This can be explained by assuming that the PPO degradation is induced by radicals formed during the decomposition of HH-PS. 相似文献
3.
The miscibility of the binary and ternary blends of poly(2,6‐dimethyl‐1,4‐phenylene oxide), brominated polystyrene, and polystyrene was investigated using a differential scanning calorimeter. The morphology of these blends was characterized by scanning electron microscopy. These studies revealed a close relation between the blend structure and its mechanical properties. The compatibilizing effect of poly(2,6‐dimethyl‐1,4‐phenylene oxide) on the miscibility of the polystyrene/brominated polystyrene blends was examined. It was found that poly(2,6‐dimethyl‐1,4‐phenylene oxide), which was miscible with polystyrene and partially miscible with brominated polystyrene, compatibilizes these two immiscible polymers if its contention exceeds 33 wt %. Upon the addition of poly(2,6‐dimethyl‐1,4‐phenylene oxide) to the immiscible blends of polystyrene/brominated polystyrene, we observed a change in the morphology of the mixtures. An improvement in the mechanical properties was noticed. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 225–231, 2000 相似文献
4.
The compatibility of blends prepared from random copolymers of p-fluorostyrene and o-fluorostyrene with poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and blends of the copolymers with polystyrene (PS) has been examined using differential scanning calorimetry. It was found that compatibility in these systems depends on copolymer composition: copolymers containing from 10 to 38% of p-fluorostyrene are miscible with PPO in all proportions. The thermally induced phase separation in these systems was also studied and the existence of lower critical solution temperatures (LCST) was established for all compatible blends. The copolymers were found to be incompatible with PS regardless of composition. 相似文献
5.
Francesco Picchioni Emanuele Casentini Elisa Passaglia Giacomo Ruggeri 《应用聚合物科学杂志》2003,88(11):2698-2705
Blends of styrene–butadiene–styrene (SBS) or styrene–ethylene/1‐butene–styrene (SEBS) triblock copolymers with a commercial mixture of polystyrene (PS) and poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PPO) were prepared in the melt at different temperatures according to the chemical kind of the copolymer. Although solution‐cast SBS/PPO and SBS/PS blends were already known in the literature, a general and systematic study of the miscibility of the PS/PPO blend with a styrene‐based triblock copolymer in the melt was still missing. The thermal and mechanical behavior of SBS/(PPO/PS) blends was investigated by means of DSC and dynamic thermomechanical analysis (DMTA). The results were then compared to analogous SEBS/(PPO/PS) blends, for which the presence of a saturated olefinic block allowed processing at higher temperatures (220°C instead of 180°C). All the blends were further characterized by SEM and TGA to tentatively relate the observed properties with the blends' morphology and degradation temperature. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2698–2705, 2003 相似文献
6.
The influence of blend composition on physical aging behavior was assessed for miscible blends of atactic polystyrene (a-PS) and poly(2,6-dimethyl-1,4-phenylene oxide) (PPO). At aging temperatures of 15 and 30°C below the midpoint glass transition temperature (Tg), the a-PS/PPO blends exhibited volume relaxation rates that were retarded compared to additivity based upon the aging rates for pure a-PS and PPO. This negative deviation diminished with increased undercooling, and eventually the volume relaxation rates displayed a nearly linear trend with respect to composition at the greatest undercooling of 60°C that was employed. The compositional nature of unaged glassy density and secondary relaxation intensity, both influenced by the presence of specific attractive interactions in the blend system, were likely causes for the variation of volume relaxation rate with composition and undercooling. For aging at 30°C below Tg, the dependence of enthalpy relaxation rate on composition was similar to that observed for volume relaxation. Mechanical aging rates determined from time–aging time superposition of creep compliance data showed significantly less than additive behavior for the blends aged at Tg−30°C, but unlike the volume relaxation results, this trend persisted at the 60°C undercooling. 相似文献
7.
The structure and mechanical properties of highly oriented films of a miscible blend of syndiotactic polystyrene and poly(2,6‐dimethylphenylene‐1,4‐oxide) (sPS/PPO) were studied in the composition range of sPS/PPO = 10/0 to 5/5. The oriented films were prepared by stretching the amorphous films of the blends. Wide‐angle X‐ray diffraction and polarized FTIR spectroscopy were used to analyze the amount of mesophase and molecular orientation. Drawing of the amorphous films of sPS and sPS/PPO blend induced a highly oriented mesophase. The mesophase content increases with increasing draw ratio and becomes nearly constant above a draw ratio of 3. Under the same draw ratio, the mesophase content decreases with increasing PPO content. The orientation function in the mesophase is as high as 0.95–0.99 irrespective of the composition and draw ratio. On the other hand, the orientation of molecular chains in the amorphous phase and mesophase increases with increasing draw ratio, and it decreases with increasing PPO content. The drawn films of pure sPS show high strength and high modulus in the drawing direction, but exhibit low strength in the direction perpendicular to the drawing. In the case of sPS/PPO = 7/3 blend, however, the ultimate strength in the perpendicular direction was dramatically improved compared with that of pure sPS and the ultimate strength in the parallel direction was similar to that for the oriented pure sPS. The improved mechanical properties in the sPS/PPO blends were discussed in relation to the structural characteristics of the sPS/PPO blend system. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91:2789–2797, 2004 相似文献
8.
Infra-red measurements of the dichroic ratio of atactic polystyrene and poly(2,6-dimethyl 1,4-phenylene oxide) absorption bands provide a valuable method for the determination of orientation as well as relaxation of chains of both polymers during stretching of their compatible blends. Influence of strain rate, temperature of stretching, and molecular weight of the polymers on orientation of both polymer chains in blends containing up to 35% PPO has been studied. Orientation relaxation for both polymers has been analysed using Lodge's constitutive equation. Master curves have been obtained for PPO and PS in the blends at a reference temperature T0 = Tg + 10°C. Results are interpreted in terms of an hindrance of relaxation of PS chains induced by interaction with a highly-oriented PPO network which slowly relaxes. 相似文献
9.
A reactive compatibilizer, mercapto‐functionalized EVA (EVASH), in combination with styrene‐butadiene block copolymer (SBS), was used to compatibilize the blends of polystyrene (PS) and ethylene–vinyl acetate copolymer (EVA). The reactive compatibilization was confirmed by the presence of insoluble material and from dynamic‐mechanical analysis. In addition to a more uniform morphology with small phase size, the compatibilization also provided excellent stabilization of the morphology, with an almost complete suppression of coarsening during annealing. As a consequence, a substantial increase on the elongation at break without significant influence on ultimate tensile strength was achieved for compatibilized blends with different compositions. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 14–22, 2006 相似文献
10.
The intrinsic birefringence of atactic polystyrene and poly(2,6-dimethyl 1,4-phenylene oxide) in their compatible blends are obtained from coupled birefringence and infra-red dichroism measurements. The experimental value obtained for poly(2-6-dimethyl 1,4-phenylene oxide) is in reasonable agreement with the value calculated from bond polarizabilities. These results allow evaluation of the angle between the normal to the benzene ring of polystyrene and the chain axis. This angle appears to be constant as a function of draw ratio and poly(2,6-dimethyl 1,4-phenylene oxide) percentage in the 0–35% studied range. 相似文献
11.
Lawrence R. Schmidt 《应用聚合物科学杂志》1979,23(8):2463-2479
The viscoelastic melt behavior of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO 1 PPO is a registered trademark of the General Electric Company. resin), high-impact polystyrene (HIPS), and a 35–65 blend of these polymers has been characterized by measuring the steady shear viscosity and primary normal stress difference and the dynamic storage and loss moduli as functions of shear rate or frequency and temperature. Time–temperature superpositioning was used to generate master curves of each type of data for a reference temperature of 260°C. This procedure required five different empirical shift factors for each material. These shift factors show large differences between PPO resin and HIPS and exhibited large deviations from the WLF equation with universal constants. This result suggests that the temperature dependence of the relaxation processes in PPO resin is significantly different from the temperature dependence of HIPS relaxations. Flow activation energies computed from the viscosity data for PPO resin are much higher and more shear sensitive than those calculated for HIPS. The computed relaxation spectra clearly display the effect of long-time relaxation mechanisms associated with PPO molecules when compared to HIPS. The 35–65 blend exhibits general rheological compatibility with material parameters and responses intermediate between PPO resin and HIPS. This result is indicative of a high degree of segmental mixing for the two components in the blend. 相似文献
12.
Jürgen Schellenberg 《应用聚合物科学杂志》1997,64(9):1835-1842
An immiscible polymer system of polyethylene (HDPE)/poly(2,6-dimethyl-1,4-phenylene ether)/polystyrene was compatibilized in the presence of a specific formulated compatibilizer and the properties of this system were studied, in particular, as a function of the poly(phenylene ether) and polystyrene content in the blend with polyethylene and as a function of compatibilizer concentration. The compatibilizer used was a hydrogenated styrene/isoprene/styrene triblock copolymer (SEPS) which also contained quantities of polypropylene and paraffin oil. Selected thermal, mechanical, and processing properties were investigated and their special features are discussed. In relation to specific properties like the modulus of elasticity and notched Izod impact strength, the polymer system with a hydrogenated SEPS triblock copolymer investigated seems to be a better compatibilized system than other blends described. The phase behavior of the polymer system was characterized using DSC and showed three general polymer phases: a partially crystalline polyethylene phase, an amorphous mixed phase of miscible poly(phenylene ether) and polystyrene, as well as a preferred isotactic crystalline polypropylene phase. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 64: 1835–1842, 1997 相似文献
13.
Binary blends of the sulfonated poly(ether ether ketone) (SPEEK)–poly(ether imide) (PEI) and SPEEK–polycarbonate (PC), and ternary blends of the SPEEK–PEI–PC, were investigated by differential scanning calorimetry. SPEEK was obtained by sulfonation of poly(ether ether ketone) using 95% sulfuric acid. From the thermal analysis of the SPEEK–PEI blends, single glass transition temperature (Tg) was observed at all the blend composition. For the SPEEK–PC blends, double Tgs were observed. From the results of thermal analysis, it is suggested that the SPEEK–PEI blends are miscible and the SPEEK–PC blends are immiscible. Polymer–polymer interaction parameter (χ12) of the SPEEK–PEI blends was calculated from the modified Lu and Weiss equation, and found to range from −0.011 to −0.825 with the blend composition. For the SPEEK–PC blends, the χ12 values were calculated from the modified Flory–Huggins equation, and found to range from 0.191 to 0.272 with the blend composition. For the SPEEK–PEI–PC ternary blends, phase separation regions that showed two Tgs were found to be consistent with the spinodal curves calculated from the χ12 values of the three binary blends. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2488–2494, 2000 相似文献
14.
Ayse Z. Aroguz 《Polymer》2004,45(8):2685-2689
The phase behavior of ternary blends of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO), polystyrene (PS) and a 50/50 mole % statistical copolymer of o-chlorostyrene and p-chlorostyrene [p(oClS-pClS)] has been investigated by differential scanning calorimetry (DSC) and analyzed in terms of a Flory-Huggins mean-field segmental interaction parameter treatment. Both PS/PPO and PPO/p(oClS-pClS) binary blends exhibit single glass transition temperatures over the full composition range whereas the PS/p(oClS-pClS) system displays a substantial immiscibilty window which extends into the ternary phase diagram. In principle, ternary systems provide enhanced opportunities relative to binary systems for evaluating segmental interaction parameters χijs from experimental data because of the high sensitivity of phase boundary locations to these parameters and to component molecular weights. In this system the effect of these parameters on the phase boundary was studied experimentally and compared to calculated values. 相似文献
15.
Pressed films of blends of polystyrene (PS) with ethylene–propylene diene monomer rubber (EPDM) or grafted copolymer of styrene (St) onto EPDM (EPDM-g-St) rubber were examined by small-angle X-ray scattering (SAXS), and scanning electron microscope (SEM). Small-angle X-ray scattering from the relation of phase was analyzed using Porod's Law and led to value of interface layer on blends. The thickness of interface layer (σb) had a maximum value at 50/50 (PS–EPDM-g-St) on blends. The radius of gyration of dispersed phase (domain) and correlation distances ac in blends of PS–EPDM-g-St were calculated using the data of SAXS. The morphology and structure of blends were investigated by SEM. © 1998 John Wiley & Sons, Inc. J. Appl. Polym. Sci. 70: 805–810, 1998 相似文献
16.
Asok K. DikshitAkira Kaito 《Polymer》2003,44(21):6647-6656
The crystallization and orientation behavior in the miscible iPS/PPO blends were studied aiming at producing oriented materials consisting of iPS crystals and amorphous PPO chains. Oriented films of iPS/PPO blends were prepared by drawing the melt-quenched blend films. The films were heat-treated under constraint at the drawing temperature so as to crystallize the molecular chains of iPS in the oriented state. The crystallinity and the crystal orientation in the drawn annealed films were studied by the wide-angle X-ray diffraction (WAXD), and the orientation behaviors of molecular chains were analyzed by polarized FTIR spectroscopy. WAXD diagrams show the presence of the highly oriented crystalline structure of iPS in the drawn annealed films of pure iPS and iPS/PPO=7/3 blend. The polarized FTIR spectra of drawn annealed films suggest that the molecular orientation of the amorphous chains of PPO and iPS is markedly relaxed by the heat treatment, although the orientation of iPS with 31 helical structure was retained during the oriented crystallization. It was concluded that the drawn annealed samples of the iPS/PPO=7/3 blend consist of highly oriented iPS crystals and nearly isotropic amorphous materials. The mechanical properties of the oriented iPS/PPO blends were measured not only in the stretching direction but also perpendicular to the stretching direction. It was shown that the ultimate strength in the perpendicular direction is 4-5 times higher in the drawn annealed film of iPS/PPO=7/3 blend than in the drawn annealed iPS. The improvement in the vertical strength in the blend is discussed in relation to the structural characteristics of the iPS/PPO blend. 相似文献
17.
18.
The formation, mechanical properties, thermal characteristics, and density of diffuse shear banded zones of polystyrene, poly(2,6-dimethyl-1,4-phenylene oxide) (PPO), and their miscible blends were studied. A significant increase in density of 0.2 to 0.3 percent was found for the diffuse shear banded zones. Differential scanning calorimetry results revealed a volume recovery process that occurs below Tg for the diffuse shear banded zones. The post-yield-stress drop, anelastic shear strain within the zone, and anelastic tensile strain were all found to decrease with increasing PPO content in an identical manner. The sharp shear band to diffuse shear banded zone transition was related to chain mobility, molecular packing, and free energy as manifested in the post-yield-stress drop. The decrease in anelastic shear strain with increasing PPO content for the blends is possibly related to the beta transition and length between entanglements. 相似文献
19.
Antonio Sanchez‐Solis Andres Garcia‐Rejon Mirna Estrada Antonio Martinez‐Richa Guadalupe Sanchez Octavio Manero 《Polymer International》2005,54(12):1669-1672
The production and properties of blends of poly(ethylene terephthalate) (PET) and poly(ethylene naphthalene 2,6‐dicarboxylate) (PEN) with three modified clays are reported. Octadecylammonium chloride and maleic anhydride (MAH) are used to modify the surface of the montmorillonite–Na+ clay particles (clay–Na+) to produce clay–C18 and clay–MAH, respectively, before they are mixed with the PET/PEN system. The transesterification degree, hydrophobicity and the effect of the clays on the mechanical, rheological and thermal properties are analysed. The PET–PEN/clay–C18 system does not show any improvements in the mechanical properties, which is attributed to poor exfoliation. On the other hand, in the PET–PEN/clay–MAH blends, the modified clay restricts crystallization of the matrix, as evidenced in the low value of the crystallization enthalpy. The process‐induced PET–PEN transesterification reaction is affected by the clay particles. Clay–C18 induces the largest proportion of naphthalate–ethylene–terephthalate (NET) blocks, as opposed to clay–Na+ which renders the lowest proportion. The clay readily incorporates in the bulk polymer, but receding contact‐angle measurements reveal a small influence of the particles on the surface properties of the sample. The clay–Na+ blend shows a predominant solid‐like behaviour, as evidenced by the magnitude of the storage modulus in the low‐frequency range, which reflects a high entanglement density and a substantial degree of polymer–particle interactions. Copyright © 2005 Society of Chemical Industry 相似文献