首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of co[poly(ethylene terephthalate-p-oxybenzoate)] copolyesters, viz., P28, P46, P64, and P82, were synthesized. These copolyesters were blended with poly(ethylene terephthalate) (PET) at the level of 10 wt % at 293°C for different times. The results from proton NMR analysis reveal that a significant amount of the transesterification has been detected in the cases of PET/P28, PET/P46, and PET/P64 blends. The blending time necessary before any transesterification reaction could be detected depends on the composition of copolyester, e.g., a time less than 3 min is needed for both PET/P28 and PET/P46 blends, while a longer time of 8–20 min is needed for the PET/P64 blend. It is concluded that the higher the mol ratio of the POB moiety in the copolyester is the longer the blending time needed to initiate the transesterification. The degree of transesterification is also increased as the duration of melt blending is prolonged. Two-phase morphology was observed by scanning electron microscopy (SEM) micrographs in all the blends. It was observed that the more similar the composition between the copolyester and PET in the blends is the better the miscibility or interfacial adhesion between the two phases. Moreover, the miscibility can be markedly improved by the duration of melt blending. © 1996 John Wiley & Sons, Inc.  相似文献   

2.
Polyethylene terephthalate (PET) was blended with two kinds of co[poly(ethylene terephthalate-p-oxybenzoate)] (POB–PET) copolyester, designated as P46 and P64, respectively. The PET and POB–PET copolyester were combined in the ratios of 85/15, 70/30, and 50/50. The blends were melt mixed in a Brabender Plasticorder at 275, 285, and 293°C for different amounts of time. The transesterification reactions during the melt mixing processes of PET with POB–PET copolyester blends were detected by proton nuclear magnetic resonance analysis. The values of the rate constants are a function of temperature and the composition of blends. The transesterification reactions that may occur during the melt mixing processes have been discussed also. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 2727–2732, 1999  相似文献   

3.
Poly(ethylene terephthalate) (PET) was blended with four different kinds of co[poly(ethylene terephthalate-p-oxybenzoate)] copolyesters, designated P28, P46, P64, and P82, with the level of copolyester varing from 1 to 15 wt %. All samples were prepared by melt-mixing in a Brabender Plasticorder for 8 min. The crystallization behavior of samples were then studied via DSC. The results indicate that these four copolyesters accelerate the crystallization rate of PET in a manner similar to that of a nucleating agent. The acceleration of the PET crystallization rate was most pronounced in the PET/P28 blends with a maximum level at 10 wt % of P28, and in the PET/P28 blends, at 5 wt % of P82. The melting endotherm onset temperatures and the melting peak widths for the blends are comparable with those of neat PET. These results imply that the stability of PET crystalline phase in the blends does not change by blending. The observed changes in crystallization behavior, however, are explained by the effect of the physical state of the copolyester during PET crystallization as well as the content of the p-oxybenzoate (POB) moiety in corporated into the blends. © 1995 John Wiley & Sons, Inc.  相似文献   

4.
Poly(ethylene terephthalate) (PET) was blended with three different kinds of co[poly(butylene terephthalate‐p‐oxybenzoate)] copolyesters, designated B28, B46, and B64, with the level of copolyester varying from 1 to 15 wt %. All samples were prepared by solution blending in a 60/40 by weight phenol/tetrachloroethane solvent at 50°C. The crystallization behavior of samples was then studied via differential scanning calorimetry. The results indicate that these three copolyesters accelerate the crystallization rate of PET in a manner similar to that of a nucleating agent. The acceleration of PET crystallization rate was most pronounced in the PET/B28 blends with a maximum level at 10 wt % of B28. The melting temperatures for the blends are comparable with that of pure PET. The observed changes in crystallization behavior are explained by the effect of the physical state of the copolyester during PET crystallization as well as the amount of copolyester in the blends. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 587–593, 2000  相似文献   

5.
Poly(p-hydroxybenzoic acid) (PHB)–poly(ethylene terephthalate) (PET) 8/2 thermotropic liquid crystalline copolyester, poly(ethylene 2,6-naphthalate) (PEN), and PET were mechanically blended to pursue the liquid crystalline (LC) phase of ternary blends. The torque values of blends with increasing PHB content abruptly decreased above 40 wt % of PHB content because the melt viscosity of ternary blends dropped. Glass transition temperature and melting temperature of blends increased with increasing PHB content. The tensile strength and initial modulus of blends were low at 10 and 20 wt % PHB. However, the blends containing above 30 wt % PHB were improved with increasing PHB content due to the formation of fibrous structure. The blend of 20 wt % PHB formed irregularly dispersed spherical domains, and the blends of 30–40 wt % PHB showed LCP ellipsoidal domains and fibrils. In the polarized optical photographs, the blends of 40 wt % PHB showed pseudo LC phases. The degree of transesterification and randomness of blends were increased with blending time. © 1998 John Wiley & Sons, Inc. J. Appl. Polym. Sci. 70: 1065–1073, 1998  相似文献   

6.
High molecular weight phosphorus-containing copolyesters, poly(ethylene terephthalate)-co-poly(ethylene DDP) (PET-co-PEDDP)s, were prepared and characterized with the objective of producing a non-halogen flame retardant system for practical applications. The phosphorus-containing copolyester with 30 wt% phosphorus (P30 copolyester) was blended with PET to evaluate their characteristics and flame retardancy. Higher phosphorus content results in lower crystallinity and higher char formation after thermal degradation. The rheological behavior remains similar to that of PET. The P30/PET blend possesses higher crystallization rate than the corresponding phosphorus-containing copolyester containing equal phosphorus content. Thermal and rheological behaviors of P30/PET blends are similar to PET or the phosphorus-containing copolyesters. The P30/PET blends are miscible or compatible base on single Tgs detected by DSC or DMA. The SEM/EDX phosphorus mapping image of the P30/PET blend shows uniform distribution of the phosphorus moieties within the P30/PET matrix, another indication of a compatible or miscible blend between the phosphorus-containing copolyester P30 and PET. Flame retardancy of the P30/PET blend is identical to that of the phosphorus-containing copolyester with identical phosphorus content. Blending of high phosphorus content copolyester with virgin PET provides a feasible method to obtain a flame resistant PET with LOI greater than 28.  相似文献   

7.
Poly(ethylene terephthalate) (PET) was blended with two different poly(oxybenzoate‐p‐trimethylene terephthalate) copolymers, designated T28 and T64, with the level of copolymer varying from 1 to 15 wt %. All samples were prepared by solution blending in a 60/40 (by weight) phenol/tetrachloroethane solvent at 50°C. The crystallization behavior of the samples was studied by DSC. The results indicate that both T28 and T64 accelerated the crystallization rate of PET in a manner similar to that of a nucleating agent. The acceleration of PET crystallization rate was most pronounced in the PET/T64 blends with a maximum level at 5 wt % of T64. The melting temperatures for the blends are comparable to that of pure PET. The observed changes in crystallization behavior are explained by the effect of the physical state of the copolyester during PET crystallization as well as the amount of copolymer in the blends. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1599–1606, 2002  相似文献   

8.
Physical blends of poly(ethylene terephthalate) (PET) and poly(ethylene isophthalate) (PEI), abbreviated PET/PEI (80/20) blends, and of PET and a random poly(ethylene terephthalate‐co‐isophthalate) copolymer containing 40% ethylene isophthalate (PET60I40), abbreviated PET/PET60I40 (50/50) blends, were melt‐mixed at 270°C for different reactive blending times to give a series of copolymers containing 20 mol % of ethylene isophthalic units with different degrees of randomness. 13C‐NMR spectroscopy precisely determined the microstructure of the blends. The thermal and mechanical properties of the blends were evaluated by DSC and tensile assays, and the obtained results were compared with those obtained for PET and a statistically random PETI copolymer with the same composition. The microstructure of the blends gradually changed from a physical blend into a block copolymer, and finally into a random copolymer with the advance of transreaction time. The melting temperature and enthalpy of the blends decreased with the progress of melt‐mixing. Isothermal crystallization studies carried out on molten samples revealed the same trend for the crystallization rate. The effect of reaction time on crystallizability was more pronounced in the case of the PET/PET60I40 (50/50) blends. The Young's modulus of the melt‐mixed blends was comparable to that of PET, whereas the maximum tensile stress decreased with respect to that of PET. All blend samples showed a noticeable brittleness. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3076–3086, 2003  相似文献   

9.
In situ reinforced binary and ternary polymer/polymer composites are obtained by the melt blending of poly(ethylene terephthalate) (PET), polyamide-6 (PA-6), and polyamide-66 (PA-66) in an extruder in the presence of a catalyst, followed by drawing of the extrudate and annealing of the drawn blends. The blends were studied by DSC, X-ray, SEM, and mechanical testing. After drawing, all the components were found to be oriented, forming microfibrils with diameters of about 1–2 μm. The chemical nature of the homopolymers affects the blends' morphologies; while the PA-66/PA-6 blend is homogeneous, phase separation is established in the case of PET/PA-6. The decrease in the enthalpy of melting of the blend components as well as the depression of their peaks of crystallization from the melt, compared to pure homopolymers, are indications that block copolymers have been formed via interchange reactions during the blending process. On the one hand, these copolymers improve the compatibility of the homopolymers, and on the other hand, they alter the chemical composition of the blends. After thermal treatment at 245°C, i.e., above the Tm of PA-6, the latter undergoes some disorientation, while PET and PA-66 retain their microfibrillar shape, and in this way, a compositelike structure is created. The presence of chemical bonds between the separate phases via copolymers favors the cocrystallization of PA-66 and PA-6 as well as the cooperative crystallization of PET, PA-6, and PA-66, both modes fostering improved compatibility (adhesion) of the blend components. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67: 723–737, 1998  相似文献   

10.
Blends of diglycidyl ether of bisphenol A (DGEBA) and poly(ethylene terephthalate) (PET) were prepared by solution casting from 1,1,2,2-tetrachloroethane. The miscibility and interchange reactions in DGEBA–PET blends were studied by differential scanning calorimetry (DSC) and optical microscopy. PET was found to be miscible with DGEBA, as revealed by the existence of a single composition-dependence glass transition temperature (Tg). Interchange reactions between DGEBA and PET components in the blends at elevated temperatures were proven by appearance of the enhanced glass transition temperatures and the marked decrease in the crystallinity of PET. These results are attributed to the formation of copolymers based on the blend components due to interchange reactions. The morphological observations confirmed that there existed interchange reactions between DGEBA and PET. There also existed a self-crosslinking reaction among the DGEBA molecules. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 639–647, 1999  相似文献   

11.
《国际聚合物材料杂志》2012,61(3-4):345-358
Abstract

The crystallization of several blends of poly(ethylene terephthalate) (PET) and poly(ethylene 2,6 naphthalene dicarboxylate) (PEN) has been investigated by wide angle- (WAXS) and small angle X-ray scattering (SAXS) using synchrotron radiation. The role of transesterification reactions, giving rise to a fully amorphous non-crystal-lizable material (copolyester) is brought up. For the blends rich in PET, crystallization temperatures (Tc ) of 105 and 117°C were used. For blends rich in PEN, crystaffization was performed at Tc =150 and 165°C, respectively. The time variation of the degree of crystallinity was fitted into an Avrami equation considering the induction time prior to the beginning of crystallization. The Avrami parameters, the half times of crystallization, as well as the nanostructure development (SAXS invariant and long period) for the blends, are discussed in relation to blend composition and are compared to the parameters observed for the homopolymers PET and PEN.  相似文献   

12.
An attempt was made to explore the effects of the interchange reactions on the viscoelastic behavior of binary blends based on poly(ethylene terephthalate) (PET)/poly(ethylene naphthalate) (PEN) and their nanocomposites. It was seen that with an increase in the number of extrusion runs and mixing temperature, the extent of reaction (X) and degree of randomness (RD) both increased, whereas the average sequence block lengths values were decreased. On the contrary, the blend composition did not play a significant role on X and RD values. Addition of nanoclay inhibited the transreactions in PET/PEN blends. The absence of crystallization peaks implied that the crystalline structure was destroyed as a result of blending and an amorphous system was created possibly due to the transreactions simultaneously with the formation of random copolymers inhibiting the crystallization process. The rheological investigations showed that the addition of PEN into the PEN/PET blends enhanced the storage modulus, loss modulus, and complex viscosity. The viscosity upswing observed at low‐frequency region in the case of nanocomposite systems evidently confirmed the occurrence of transreactions. Nonetheless, a significant increment in the viscoelastic properties was perceived in the presence of nanoclay corroborating the proper nanoclay distribution throughout the PET/PEN blend system. POLYM. ENG. SCI., 53:2556–2567, 2013. © 2013 Society of Plastics Engineers  相似文献   

13.
E. Bhoje Gowd 《Polymer》2005,46(18):7443-7449
Poly(ethylene terephthalate) (PET) (IV:0.15 dL/g) oligomer was obtained by depolymerisation of high molecular weight PET. Polycarbonate (PC) oligomer (IV: 0.15 dL/g) was synthesized by standard melt polymerization procedure using bisphenol A and diphenyl carbonate in the presence of a basic catalyst. Blends of varying compositions were prepared by melt blending the chemically distinct PET and PC oligomers. The copolymer, poly(ethylene terephthalate-co-bisphenol A carbonate) was synthesized by simultaneous solid state polymerization and ester-carbonate interchange reaction between the oligomers of PET and PC. The reaction was carried out under reduced pressure at temperatures below the melting temperature of the blend samples. DSC and WAXS techniques characterized the structure and morphology of the blends, while 1NMR spectroscopy was used to monitor the progress of interchange reactions between the oligomers. The studies have indicated the amorphisation of the PET and PC crystalline phases in solid state with the progress of solid-state polymerization and interchange reaction.  相似文献   

14.
Poly(ethylene terephthalate) (PET) is a useful high-temperature plastic. Its shortcoming is that it has poor impact-strength properties. The impact strength of this polymer was dramatically improved by blending with a copolyester thermoplastic elastomer, or an acrylate core/shell elastomer. The addition of triphenyl phosphite (TPP) to the polyester elastomer/PET blends encouraged molecular weight buildup and resulted in improved impact strength and tensile properties. It was suspected that the phosphite interacts chemically with the components of the blend during processing and produces the improvements. Phosphorus-31 (31P)-NMR techniques have provided a direct spectroscopic probe of the chemical nature of the phosphite additive after the processing steps. Solution and solid-state spectra have revealed the presence of products in which the polymer chains are grafted and crosslinked through the phosphorus additive. Up to a 60-fold increase in impact strength of PET was obtained by blending with elastomers in the presence of TPP. Amorphous PET is susceptible to environmental stress cracking by many solvents, whereas crystalline PET or PET elastomer blends exhibit high resistance to solvent cracking. Similar improvements in properties were also realized when PET obtained from recycled soft drink bottles was used. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
K.W. Haggard 《Polymer》2004,45(7):2313-2320
The phase behavior of blends of copolycarbonates containing 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexanone (TMC-PC) and bisphenol-A repeat units with its constituent homopolymers was determined using melt mixing, solution casting, and precipitation casting methods. Miscibility was observed for all combinations except for some involving the TMC-PC homopolymer. Phase behavior was assessed using differential scanning calorimetry and visual assessment of optical clarity. The blending procedure was found to affect the phase behavior in some blends due to interchange reactions and casting methods. Based on the observations of the cast blends, the intramolecular interaction energy of the copolycarbonate was determined to be between 0.029 and 0.036 cal/cc. The phase behavior of these copolycarbonates and a copolyester based on 1,4-cyclohexanedimethanol with terephthalic and isophthalic acids was determined after melt mixing. The copolyester is miscible with all of the copolycarbonates, even in the absence of interchange reactions.  相似文献   

16.
Blends composed of poly(ethylene terephthalate) and a polyarylate have been melt-mixed and molded in a reciprocating screw injection-molding machine for different plasticization times. Interchange reactions between the blend components occur during processing and at a greater level as the plasticization time increases. These reactions led to a progressive homogenization of the blends as well as to a hindered crystallization of PET. The effect of the plasticization time on the mechanical properties of the blends seems to be a consequence of interchange reactions as well as of the degradation of the blends at the highest plasticization times. © 1994 John Wiley & Sons, Inc.  相似文献   

17.
Copolyesters of poly(ethylene terephthalate) (PET) with a liquid crystalline polymer (LCP), SBH 1:1:2, have been synthesized by the polycondensation, carried out in the melt at temperatures up to 300°C of sebacic acid (S), 4,4′-dihydroxybiphenyl (B), and 4-hydroxybenzoic acid (H) in the presence of PET. The PET-SBH copolyesters have been characterized by differential scanning calorimetry, scanning electron microscopy, X-ray diffraction, etc., and the relationships between properties and preparation conditions are discussed. The copolyesters show a biphasic nature, which is more evident for the products synthesized with a thermal profile comprising relatively lower temperatures (220–230°C) in the initial stages of the polycondensation. Another procedure, whereby the addition of PET to the monomer charge was made at a later stage of the reaction, has also been devised to prepare copolyesters with enhanced blockiness. The compatibilizing effect of the PET-SBH copolymers toward PET/SBH blends has been investigated. PET/SBH blends (75/25, w/w) have been prepared in a Brabender mixer at 270°C and 30 rpm, with and without the addition of appropriate amounts (2.5, 5, and 10%, w/w) of 50-50 PET-SBH copolyesters. Different blending techniques have been used according to whether the three components were fed into the mixer at the same time, or one of them was added at a later stage. The effect of the type and the amount of added copolyester has been studied through morphological, thermal, and mechanical characterizations. The results show that the addition of small amounts ∼5 wt% of copolyesters leads to improved dispersion and adhesion of the minor SBH phase. Moreover, while the tensile modulus of the blends is practically unaffected by the addition of the copolymer, a substantial increase of both tensile strength and elongation to break is found for a concentration of added copolyester of ∼5wt%. Slightly better results were apparently obtained by the use of a block copolyester.  相似文献   

18.
Blends of poly(ethylene terephthalate) (PET) and poly(ethylene octene) (POE) were prepared by melt blending with various amounts of trimethylolpropane triacylate (TMPTA). The mechanical properties, phase morphologies, and gel fractions at various absorbed doses of γ‐irradiation have been investigated. It was found that the toughness of blends was enhanced effectively after irradiation as well as the tensile properties. The elongation at break for all studied PET/POE blends (POE being up to 15 wt %) with 2 wt % TMPTA reached 250–400% at most absorbed doses of γ‐irradiation, approximately 50–80 times of those of untreated PET/POE blends. The impact strength of PET/POE (85/15 wt/wt) blends with 2 wt % TMPTA irradiated with as little as 30 kGy absorbed dose exceeded 17 kJ/m2, being approximately 3.4 times of those of untreated blends. The improvement of the mechanical properties was supported by the morphology changes. Scanning electron microscope images of fracture surfaces showed a smaller dispersed phase and more indistinct inter‐phase boundaries in the irradiated blends. This indicates increased compatibility of PET and POE in the PET/POE blends. The changes of the morphologies and the enhancement of the mechanical properties were ascribed to the enhanced inter‐phase boundaries by the formation of complex graft structures confirmed by the results of the gelation extraction and Fourier Transform Infrared analyses. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
We investigated the reactive melt blending of poly(ethylene terephthalate) (PET) and poly(trimethylene terephthalate) (PTT) in terms of the thermal properties and structural features of the resultant materials. Our main objectives were (1) to investigate the effects of the processing conditions on the nonisothermal melt crystallization and subsequent melting behavior of the blends and (2) to assess the effects of the blending time on the structural characteristics of the transreaction products with a fixed composition. The melting parameters (e.g., the melting temperature, melting enthalpy, and crystallization temperature) decreased with the mixing time; the crystallization behavior was strongly affected by the composition and blending time. Moreover, a significant role was played by the final temperature of the heating treatment; this meant that interchange reactions occurred during blending and continued during thermal analysis. The wide‐angle X‐ray diffraction patterns obtained under moderate blending conditions showed the presence of crystalline peaks of PET and PTT; however, the profiles became flatter after blending. This effect was more and more evident as the mixing time increased. Transesterification reactions between the polyesters due to longer blending times with an intermediate composition led to a new copolymer material characterized by its own diffraction profile and a reduced melting temperature. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
The crystallization and melting behaviors as well as the crystalline morphologies of Poly(ethylene terephthalate)/Poly(m‐xylylene adipamide) (PET/MXD6) blends have been examined and characterized with the aid of differential scanning calorimetry (DSC) and wide angle x‐ray diffraction (WAXD). The isothermal and nonisothermal crystallization behaviors of the blends were studied as functions of the contents of MXD6, catalyst concentrations, and the effects of the interchange reactions between PET and MXD6. Wide angle x‐ray scattering has been used to examine the crystalline morphologies of the PET/MXD6 blends, to characterize their crystalline and amorphous phases, and to determine crystallite sizes in the blends. Results indicate that the catalyst has both catalyzing and nucleation effects on the PET/MXD6 blends, with the extents of each effect dependent upon the content of catalyst. In addition the crystalline morphology was found to be dominated by the MXD6 content as well as the crystallization temperature. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号