首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Styrene maleic anhydride (SMA) copolymers were toughened by blending with two distinctly different rubber modifiers: styrene‐butadiene‐styrene (SBS) block copolymer and methacrylated butadiene‐styrene emulsion‐made graft copolymer (MBS). The modifiers were used both individually and in combination for the examination of their roles in toughening SMA. SMA was miscible with poly(methylmethacrylate) shell of MBS, whereas it was partially miscible with the polystyrene (PS) phase of SBS. When 40–50% of SBS was used in blends, the PS phase of SBS became immiscible with SMA. SBS did not improve the Izod impact strength of SMA appreciably. A prominent synergistic toughening effect was experimentally observed when SBS and MBS were used in combination in brittle SMA. This effect may be attributed to the fact that the large SBS particles initiate crazes and small MBS particles with good adhesion to SMA matrix improve the ligament thickness, which may play a critical role in craze growth and termination. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2260–2267, 2003  相似文献   

2.
Effects of compatibilizers on impact properties of polypropylene/ polystyrene (PP/PS) blends were studied and carried out through melt blending using co- rotating twin-screw extruder. A combination of two compatibilizers, maleic anhydride grafted polypropylene (PP-g-MA) and styrene maleic anhydride (SMA) was applied into PP/PS blends. Results from the Izod impact strengths, SEM observations and contact angle measurements in PP(50)/PS(50) blends indicated a better compatibilization effect with the use of dual compatibilizers. This was most probably due to improved adhesion between phases in PP/PS blend systems. The use of dual compatibilizers in the blend compositions produced higher impact properties in the PP/PS blend systems compared to single compatibilizer system.  相似文献   

3.
Mechanical and dynamic mechanical properties of a waste rubber powder‐filled high‐density polyethylene (HDPE) composite are investigated. Rubber powder is surface‐modified with acrylamide (AAm) using ultraviolet. Rubber powder and HDPE are extruded using a single‐screw extruder and maleic anhydride‐grafted polypropylene is added as a compatibilizer to improve the adhesion between rubber powder and HDPE. The tensile stress and strain of AAm‐grafted rubber powder/compatibilizer/HDPE composites always exhibit higher values than those of unmodified rubber powder/HDPE composites. Surface modification of rubber powder is shown to decrease the magnitude of the tan δ of the HDPE composite. Higher values of the notched Izod impact strength of a surface‐modified rubber‐filled composite is observed compared to those of unmodified rubber‐filled composite. Experimental results show that acryl amide‐grafted rubber powder reacts with maleic anhydride and it results in improved mechanical properties of the HDPE composite. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2595–2602, 2000  相似文献   

4.
This article reports on an experimental study of the physical and mechanical properties of Polystyrene (PS) and Fe-PS polymer composites containing 5, 10, and 15 vol.% of Fe powder. After mixing Fe powder and PS in a twin-screw extruder, an injection-molding machine was used to prepare unfilled PS and Fe-PS polymer composite samples. After that, the material properties were experimentally determined for each sample. The investigated material properties included the modulus of elasticity, yield and tensile strength, % elongation, Izod impact strength (notched), hardness (Shore D), melt flow index (MFI), heat deflection temperature (HDT), Vicat softening point, and glass transition temperature (T g ). The results indicated that, compared to the unfilled PS, an addition of Fe into PS decreases the yield and tensile strength, % elongation, and Izod impact strength. Furthermore, it was determined that the Fe particles increase the modulus of elasticity, hardness, MFI, Vicat softening point, and HDT values.  相似文献   

5.
Maleic anhydride compatibilized blends of isotactic polypropylene (PP) and thermotropic liquid crystaline polymer (LCP) were prepared either by the direct injection molding (one-step process), or by twin-screw extrusion blending, after which specimens were injection molded (two-step process). The morphology and mechanical properties of these injection molded in situ LCP composites were studied by means of scanning electron microscopy (SEM), Izod impact testing, static tensile, and dynamic mechanical measurements. SEM observations showed that fine and elongated LCP fibrils are formed in the maleic anhydride compatibilized in situ composites fabricated by means of the one-step process. The tensile strength and modulus of these composites were considerably close to those predicted from the rule of mixtures. Furthermore, the impact behavior of LCP fibril reinforced composites was similar to that of the glass fiber reinforced polymer composites. On the other hand, the maleic anhydride compatibilized blends prepared from the two-step process showed lower mechanical performance, which was attributed to the poorer processing behavior leading to the degradation of PP. The effects of the processing steps, temperatures, and compatibilizer addition on the mechanical properties of the PP/LCP blends are discussed.  相似文献   

6.
Blends of polystyrene (PS) and the polyether polyurethane elastomer (PU‐et) were prepared by melt mixing using poly(styrene‐co‐maleic anhydride) (SMA) containing 7 wt % of maleic anhydride as a compatibilizer. The polyurethane in the blends was crosslinked using dicumyl peroxide or sulfur. The content of maleic anhydride was varied in the blends through the addition of different SMA amounts. The morphology of the blends was analyzed by SEM and a drastic reduction of both the domain size and its distribution was observed with increase of the anhydride content in the blends. The morphology of the PU‐et blends also showed dependence on the crosslinker agent used for the elastomer, and larger domains were obtained for the elastomer phase crosslinked with dicumyl peroxide. The mechanical properties of the blends were evaluated by flexural and impact strength tests. The blend containing 0.5 wt % of maleic anhydride and 20 wt % of PU‐et crosslinked with sulfur showed the highest strength impact, which was three times superior to the PS strength impact, and the blends containing 20 wt % of PU‐et crosslinked with dicumyl peroxide showed the highest deflection at break independent of the anhydride content. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 830–837, 2002  相似文献   

7.
The microstructure of filled blends consisting of a semicrystalline polypropylene homopolymer (PP) matrix and a polystyrene (PS) dispersed phase with barium sulfate (BaSO4) filler can be controlled by an addition of maleic anhydride-grafted polypropylene (PP-g-MAH) or styrene-maleic anhydride copolymer (SMA). Scanning electron microscopy (SEM) and dynamic mechanical analysis (DMA) in the solid and melt states were the analytical tools used. The filler is occluded at the interface of the polymer phases in the filled blend without PP-g-MAH or SMA. The addition of BaSO4 to the PP/PS blend results in a decrease in domain size of the minor polymer phase. The filler is occluded in the PP phase when PP-g-MAH is added, while SMA results in the occlusion of the barium sulfate filler in the PS phase. The results of the SEM and the DMA studies were correlated, with indications of a filler network structure with both the PP-g-MAH and SMA modifiers. The barium sulfate filler surface has a specific affinity to maleic anhydride copolymers. The BaSO4 filler alone did not have a nucleation effect on the PP; however, in combination with PP-g-MAH, a clear nucleation effect was observed.  相似文献   

8.
Mechanical properties such as tensile and impact strength behavior of teak wood flour (TWF)‐filled high‐density polyethylene (HDPE) composites were evaluated at 0–0.32 volume fraction (Φf) of TWF. Tensile modulus and strength initially increased up to Φf = 0.09, whereas a decrease is observed with further increase in the Φf. Elongation‐at‐break and Izod impact strength decreased significantly with increase in the Φf. The crystallinity of HDPE also decreased with increase in the TWF concentration. The initial increase in the tensile modulus and strength was attributed to the mechanical restraint, whereas decrease in the tensile properties at Φf > 0.09 was due to the predominant effect of decrease in the crystallinity of HDPE. The mechanical restraint decreased the elongation and Izod impact strength. In the presence of coupling agent, maleic anhydride‐grafted HDPE (HDPE‐g‐MAH), the tensile modulus and strength enhanced significantly because of enhanced interphase adhesion. However, the elongation and Izod impact strength decreased because of enhanced mechanical restraint on account of increased phase interactions. Scanning electron microscopy showed a degree of better dispersion of TWF particles because of enhanced phase adhesion in the presence of HDPE‐g‐MAH. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
Stress–strain tests were made on about five dozen polymeric materials using unnotched and notched specimens containing six different types of notches. Notches decrease the strength, but they decrease the elongation to break even more drastically in general. Notch sensitivity factors are defined for strength and for energy to fracture in such a manner that the greater the notch sensitivity factor, the greater is the effect of a notch relative to the unnotched material. The notch sensitivity factor for breaking (or yield) strength is not the same as the notch sensitivity factor for energy to fracture as measured by the area under the stress–strain curve. Brittle polymers and composites tend to have greater notch sensitivity factors for strength than ductile polymers. For brittle polymers, the notch sensitivity factor for energy to fracture tends to increase with the elongation to break of the unnotched polymer. Notches generally are more detrimental to ductile polymers than to brittle ones as far as the energy to fracture is concerned. For ductile polymers, the shape of the stress–strain curve is important in determining the sensitivity to notches. The ratio of the upper to lower yield strengths should be small for low notch sensitivity. It is desirable to have the breaking strength greater than the yield strength. Glass fibers and filler in ductile matrices increase the notch sensitivity for strength but decrease the sensitivity for energy to fracture relative to the unfilled polymer. Rubber–filled polymers have a reduced notch sensitivity for strength relative to the unfilled polymer, but the notch sensitivity for energy to fracture may be either increased or decreased, depending upon the system. The energy to fracture for notched specimens correlates better with Izod impact strength than does the energy to fracture for unnotched specimens. It is recommended that notched stress–strain specimens be routinely measured along with unnotched specimens.  相似文献   

10.
The shear rheological properties of polystyrene (PS)/nano‐CaCO3 composites were studied to determine the plasticization of nano‐CaCO3 to PS. The composites were prepared by melt extrusion. A poly(styrene–butadiene–styrene) triblock copolymer (SBS), a poly(styrene–isoprene–styrene) triblock copolymer (SIS), SBS‐grafted maleic anhydride (SBS–MAH), and SIS‐grafted maleic anhydride were used as modifiers or compatibilizers. Because of the weak interaction between CaCO3 and the PS matrix, the composites with 1 and 3 phr CaCO3 loadings exhibited apparently higher melt shear rates under the same shear stress with respect to the matrix polymer. The storage moduli for the composites increased with low CaCO3 concentrations. The results showed that CaCO3 had some effects on the compatibility of PS/SBS (or SBS–MAH)/CaCO3 composites, in which SBS could effectively retard the movement of PS chain segments. The improvement of compatibility, due to the chemical interaction between CaCO3 and the grafted maleic anhydride, had obvious effects on the rheological behavior of the composites, the melt shear rate of the composites decreased greatly, and the results showed that nano‐CaCO3 could plasticize the PS matrix to some extent. Rheological methods provided an indirect but useful characterization of the composite structure. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

11.
The effect of incorporation of maleic anhydride grafted polypropylene on the properties of composites based on separately filled polypropylene and ethylene–propylene copolymer was studied. The tensile strength and impact resistance of talc-filled polypropylene composite can be improved by optimizing the additive concentrations. On the other hand, the impact resistance of talc-filled ethylene–propylene copolymer composite hardly shows any positive effect due to the addition of maleic anhydride grafted polypropylene. The determination of melt flow index for both composite systems studied, however, indicates that addition of maleic anhydride grafted polypropylene lowers the melt viscosity of highly loaded composites.  相似文献   

12.
The surface properties at the interface between thermoplastic and cellulosic fibers strongly influence the mechanical properties of plastic/cellulosic fiber composites. This paper examines the role of surface acid-base properties of plasticized PVC and cellulosic fibers on the mechanical properties of the composites. The acid-base surface characteristics of cellulosic fibers were modified by treating the fibers with γ-aminopropyltriethoxysilane (A-1100), dichlorodiethylsilane, phthalic anhydride, and maleated polypropylene. The empirical acid (KA) and base (KD) characteristics (i.e., electron donor/acceptor abilities) of untreated and treated fibers, as well as plasticized PVC, were determined using inverse gas chromatography (IGC) technique. These parameters were used to yield information on the acid-base pair interactions that were correlated with the tensile and notched Izod impact properties of the composites. Acid-base pair interactions have been found to be a valuable parameter in the design of surface modification strategies intended to optimize the tensile strength of the composites. By tailoring the acid-base characteristics of cellulosic fibers and plasticized PVC, a composite with equal tensile strength and greater modulus than unfilled PVC was developed. However, the acid-base factors did not correlate with tensile modulus, the elongation at break, and the notched Izod impact property of PVC/newsprint fiber composites. Aminosilane has been observed to be a suitable adhesion promoter for PVC/wood composites improving significantly the tensile strength of the composites. Other treatments (dichlorodiethylsilane, phtalic anhydride, and maleated polypropylene) were found to be ineffective, giving similar strength compared to the composites with untreated cellulosic fibers. FTIR spectroscopy results suggested that aminosilane was effective because treated cellulosic fibers can react with PVC to form chemical bonds. The resulting bond between PVC and cellulosic fibers accounts for the effectiveness of aminosilane, when compared with other coupling agents.  相似文献   

13.
In this study, the effect of Fe powder on the physical and mechanical properties of high density polyethylene (HDPE) was investigated experimentally. HDPE and HDPE containing 5, 10, and 15 vol % Fe metal–polymer composites were prepared with a twin screw extruder and injection molding. After this, fracture surface, the modulus of elasticity, yield and tensile strength, % elongation, Izod impact strength (notched), hardness (Shore D), Vicat softening point, heat deflection temperature (HDT), melt flow index (MFI), and melting temperature (Tm) were determined, for each sample. When the physical and mechanical properties of the composites were compared with the results of unfilled HDPE, it was found that the yield and tensile strength, % elongation, and Izod impact strength of HDPE decreased with the vol % of Fe. As compared with the tensile strength and % elongation of unfilled HDPE, tensile strength and % elongation of 15 vol % Fe filled HDPE were lower, about 17.40% and 94.75% respectively. On the other hand, addition of Fe into HDPE increased the modulus of elasticity, hardness, Vicat softening, MFI, and HDT values, such that 15 vol % Fe increased the modulus of elasticity to about 48%. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

14.
To improve mechanical and thermal properties of a hexagonal boron nitride platelet filled polymer composites, maleic anhydride was studied as a coupling agent and compatibilizer. Injection molded blends of acrylonitrile butadiene styrene (ABS), high-density polyethylene (HDPE), and maleic anhydride with boron nitride filler were tested for thermal conductivity and impact strength to determine whether adding maleic anhydride improved interfacial interactions between matrix and filler and between the polymers. Adding both HDPE and maleic anhydride to ABS as the matrix of the composite resulted in a 40% improvement in impact strength without a decrease in thermal conductivity when compared to an ABS matrix. The best combination of thermal conductivity and impact strength was using pure HDPE as the matrix material. The effective medium theory model is used to help explain how strong filler alignment helps achieve high thermal conductivity, greater than 5 W/m K for 60 wt % boron nitride. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 137, 48661.  相似文献   

15.
Blends of polystyrene (PS) with polyester polyurethane elastomer (PU‐es) were compatibilized by addition of poly(styrene‐co‐maleic anhydride) (SMA) containing 7 wt % of maleic anhydride. Binary nonreactive (PS/PU‐es) blends, binary reactive (SMA/PU‐es) blends, and ternary reactive blends (PS/SMA/PU‐es) were prepared with 10 and 20 wt % of PU‐es. The maleic anhydride content in the ternary reactive blends was varied through addition of different SMA amounts from 0.5 to 5 wt %. Polyurethane in the blends was crosslinked by using dicumyl peroxide or sulfur to improve its mechanical properties. The experimental processing conditions, such as temperature and rotor speed in an internal mixer, were analyzed before blend preparation by processing the individual polymers, PS and SMA, and the PS/PU‐es nonreactive blend (90/10), to prevent the degradation of the polymer during melt mixing and to assure macroscopic homogeneity. The torque behavior during the mixture indicated a grafting copolymerization, which was responsible for the significant drop of the PU‐es domain size in the glassy matrix, as observed by scanning electronic microscopy (SEM). The miscibility of the glassy matrix, which was shown to be dependent on the composition and the phase behavior of ternary blends, became very complex as the SMA concentration increased, as concluded from dynamical–mechanical analysis. Blends containing 20 wt % of PU‐es presented an increase up to a factor of 2 in the deflection at break in relation to PS. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2297–2304, 2004  相似文献   

16.
Poly(butylene succinate) (PBS) filled kenaf bast fiber (KBF) composites were fabricated via compression molding. The effects of KBF loading on the flexural and impact properties of the composites were investigated for fiber loadings of 10–40 wt %. The optimum flexural strength of the composites was achieved at 30 wt % fiber loading. However, the flexural modulus of the composites kept increasing with increasing fiber loading. Increasing the fiber loading led to a drop in the impact strength of about 57.5–73.6%; this was due to the stiff nature of the KBF. The effect of the fiber length (5, 10, 15, and 20 mm) on the flexural and impact properties was investigated for the 30 wt % KBF loaded composites. The composites with 10‐mm KBF showed the highest flexural and impact properties in comparison to the others. The inferior flexural and impact strength of the composites with 15‐ and 20‐mm KBF could be attributed to the relatively longer fibers that underwent fiber attrition during compounding, which consequently led to the deterioration of the fiber. This was proven by analyses of the fiber length, diameter, and aspect ratio. The addition of maleated PBS as a compatibilizer resulted in the enhancement of the composite's flexural and impact properties due to the formation of better fiber–matrix interfacial adhesion. This was proven by scanning electron microscopy observations of the composites' fracture surfaces. The removal of unreacted maleic anhydride and dicumyl peroxide residuals from the compatibilizers led to better fiber–matrix interfacial adhesion and a slightly enhanced composite strength. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
The morphology and mechanical properties of polycarbonate (PC) blends with rubber‐toughened styrene–maleic anhydride copolymer materials (TSMA) were investigated and compared with the properties of blends of PC with acrylonitrile–butadiene–styrene (ABS) materials. The PC/TSMA blends showed similar composition dependence of properties as the comparable PC/ABS blends. Polycarbonate blends with TSMA exhibited higher notched Izod impact toughness than pure PC under sharp‐notched conditions but the improvements are somewhat less than observed for similar blends with ABS. Since PC is known for its impact toughness except under sharp‐notched conditions, this represents a significant advantage of the rubber‐modified blends. PC blends with styrene–maleic anhydride copolymer (SMA) were compared to those with a styrene–acrylonitrile copolymer (SAN). The trends in blend morphology and mechanical properties were found to be qualitatively similar for the two types of copolymers. PC/SMA blends are nearly transparent or slightly pearlescent. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1508–1515, 1999  相似文献   

18.
Natural fiber reinforced composites is an emerging area in polymer science. These natural fibers are low cost fibers with low density and high specific properties. These are biodegradable and nonabrasive. The natural fiber composites offer specific properties comparable to those of conventional fiber composites. However, in development of these composites, the incompatibility of the fibers and poor resistance to moisture often reduce the potential of natural fibers, and these draw backs become critical issue. Wood‐plastic composites (WPC) are a relatively new class of materials and one of the fastest growing sectors in the wood composites industry. Composites of wood in a thermoplastic matrix (wood–plastic composites) are considered a low maintenance solution to using wood in outdoor applications. WPCs are normally made from a mixture of wood fiber, thermoplastic, and small amounts of process and property modifiers through an extrusion process. In this study, Wood–plastic composites (WPC) are produce by adding a maleic anhydride modified low density polyethylene coupling agent to improve interfacial adhesion between the wood fiber and the plastic. Mixing is done with twin screw extruder. Subsequently, tensile strength, the modulus of elasticity, % elongation, hardness, Izod impact strength, melt flow index (MFI), and heat deflection temperature (HDT) are determined. Thermal transition temperatures and microstructure are determined with DSC and SEM, respectively. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
In this study, styrene maleic anhydride copolymer (SMA2000, Styrene : Maleic Anhydride 2 : 1) is grafted and/or crosslinked with epoxidized methyl oleate, epoxidized soybean oil, methyl ricinoleate (MR), castor oil (CO), and soybean oil diglyceride. Base catalyzed epoxy‐anhydride and alcohol‐anhydride polyesters were synthesized by using the anhydride on SMA, the epoxy or secondary alcohol groups on the triglyceride based monomers. The characterizations of the products were done by DMA, TGA, and IR spectroscopy. SMA‐epoxidized soy oil and SMA‐CO polymers are crosslinked rigid infusible polymers. SMA‐epoxidized soy oil and SMA‐CO showed Tg's at 70 and 66°C, respectively. Dynamic moduli of the two polymers were 11.73 and 3.34 Mpa respectively. SMA‐epoxidized methyl oleate, poly[styrene‐co‐(maleic anhydride)]‐graft‐(methyl ricinoleate), and SMA‐soy oil diglyceride polymers were soluble and thermoplastic polymers and were characterized by TGA, GPC, DSC, NMR, and IR spectroscopy. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
《国际聚合物材料杂志》2012,61(3-4):223-234
Abstract

Chemithermomechanical pulp (CTMP) of aspen was used as a filler in high density (HDPE) and linear low density (LLDPE) polyethylenes. To improve the bonding between the fiber and polymer, different chemical treatments of the fiber a) treatment with different isocyanates b) coating with maleic anhydride was carried out. Composites with isocyanate treated wood fibers produced higher tensile strength compared to untreated fiber composites. But when compared to diisocyanate, the polyisocyanate treated fibers produced higher gain in strength. HDPE or LLDPE filled with maleic anhydride coated CTMP aspen fibers showed a slight decrease in strength with the increase in filler concentration. Tensile modulus generally increased with filler loading and was not much affected by fiber treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号