首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new effluent treatment scheme is proposed for treating palm oil mill effluent based on coagulation and anaerobic digestion of coagulated sludge. The effectiveness of anionic (N9901) and cationic (N9907) polyelectrolytes manufactured by NALCO (Malaysia) was evaluated both as coagulant and coagulant aid. The results showed that the anionic and cationic polyelectrolytes were best suited as a coagulant aid, and the cationic polyelectrolyte showed better performance than the anionic polyelectrolyte. For an influent chemical oxygen demand (COD) concentration of 59 700 mg L?1 at an alum dosage of 1700 mg L?1, the residual COD, suspended solid removal, sludge volume and pH were found to be 39 665 mg L?1, 87%, 260 mL L?1 and 6.3, respectively. For the above influent COD and alum dosage with the addition of 2 mg L?1 of cationic polyelectrolyte as coagulant aid, the results were 30 870 mg L?1, 90%, 240 mL L?1 and 6.2, respectively. The sludge resulting from the coagulation process using alum as coagulant and cationic polyelectrolyte as coagulant aid was tested for its digestibility in an anaerobic digester. The quantity of biogas generated per gram of volatile solids (VS) destroyed at a loading rate of 26.7 ± 0.5 and 35.2 ± 0.4 g VS L?1 d?1 was found to be 0.68 and 0.72 L g?1 VS destroyed. The anaerobic biomass when subjected to varying alum dosage in the coagulated palm oil sludge did not exhibit inhibition as the digester performance was in conformity with the regular treatment process Copyright © 2006 Society of Chemical Industry  相似文献   

2.
Removal of a toxic anthraquinone dye—Disperse Blue 56 (DB56) by single red mud (RM) coagulation, single ozonation and combined RM coagulation/ozonation (RM/O3) was carried out in laboratory-scale experiments. RM/O3 treatment exhibited more effective in toxicity removal, color removal and chemical oxygen demand (COD) reduction than the other two methods. The effect of several operational parameters, including initial dye concentration, pH value, RM coagulant dose and O3 dose, on color removal and COD reduction was also investigated. Among these factors, pH value had the most important effect.  相似文献   

3.
耿佳鑫  李宏梅 《辽宁化工》2014,(11):1361-1364
酿造行业废水具有高有机物浓度、高浊、高磷等特点,对后续生物处理的十分不利。采用混凝沉淀强化处理,能够有效提高化学需氧量(COD)、悬浮物(SS)的去除率,同时降低磷浓度,对后续生物处理具有促进作用。探讨了不同混凝剂、混凝剂的投加量对混凝沉降速度和COD、浊度、磷去除效果的影响。研究表明,三氯化铁为预处理乙醇废水最佳混凝剂,在p H值为7-8时,投加量为80mg/L,沉降速度较快,COD的去除率可达59%,磷的去除率〉90%。继续投加助凝剂聚丙烯酰胺(PAM)可以提高废水的处理效果,但是不显著。  相似文献   

4.
《分离科学与技术》2012,47(7):999-1007
The objectives are to evaluate the feasibility of treating oily wastewater using synthetic polymers (polyaluminum chloride (PAC), polyferric sulfate (PFS), and polyacrylamide (PAM)) combined with natural diatomite and to refine the operating parameters using diatomite as an adsorbent and a coagulant aid. The enhanced coagulation/flocculation by combining PAC with diatomite was investigated through mechanism analysis compared to the combination of PFS/PAM with diatomite, respectively. The effects of coagulant dose, initial pH, and settling time on chemical oxygen demand (COD) and turbidity were studied using PAC-diatomite in comparison with using PAC only. The enhanced coagulation/flocculation of diatomite with PAC was better than that with PFS/PAM in terms of COD/turbidity removal and floc settling characteristics, considering costs. The PAC-diatomite system reduced more than 70% of COD and 90% of turbidity over a wide pH range (7–10) within 20 min, with the optimum dose of PAC 50 mg/l and diatomite 1250 mg/l. The added diatomite effectively saved over 85% of PAC dose and simultaneously increased over 50% of COD removal efficiency. This study provided a novel and economical approach for diatomite utilization in the treatment of oily wastewater, satisfying the demands of reuse or reinjection into the ground.  相似文献   

5.
A series of lab-scale filtration experiments were performed under various operating conditions to investigate the fouling behavior of microfiltration (MF) membranes when employing two different pretreatment methods. The secondary effluents from a biologically advanced treatment process were fed to each hybrid system, consisting of coagulation-flocculation-MF (CF-MF) and ozonation-MF processes. All experiments were carried out using a stirred-cell system, which consisted of polyvinylidene difluoride (PVDF) MF membranes with a 0.22 μm pore size. When MF membrane was used alone without any pretreatment, the permeate flux dropped significantly. However, in the case of employing polyaluminium chloride (PACl) coagulation and ozonation as a pretreatment, the extent of flux decline rates was enhanced up to 88 and 38%, respectively. In the CF-MF hybrid system, the removal efficiencies of COD and total phosphorus were significantly enhanced at a coagulant dose above 30 mg/L. With ozonation, more than 90% of the color was removed even at a low dosage of ozone (5 mg/L). Therefore, ozonation would be strongly recommended as a pretreatment in terms of removing organic matter. The permeate water quality by ozonation-MF process was in good compliance with the guidelines for wastewater reuse proposed by South Korean Ministry of Environment.  相似文献   

6.
活性染料废水的混凝处理研究   总被引:6,自引:0,他引:6  
采用化学混凝法,以MgSO4为混凝剂、阴离子聚丙烯酰胺为助凝剂,分别对棉布印染过程中排放的活性染料废水进行实验研究.结果表明,pH对脱色率有较大的影响,当pH>12.0时,脱色率基本趋于稳定;脱色率及COD去除率均随MgSO4加量的增加而提高;加入阴离子聚丙烯酰胺可降低絮凝沉降时间.经混凝处理后废水的脱色率>90%,COD去除率>80%.该方法对处理棉布印染活性染料废水具有一定的适用性.  相似文献   

7.
Wastewaters derived from a textile factory and an industrial park were subjected to treatment with ferric chloride coagulation; ozonation; ferric chloride pre-coagulation/Fenton-based process/lime post-coagulation; Fenton-based process/lime post-coagulation; and ferric chloride pre-coagulation/ozonation. Schemes with the Fenton-based process proved the most efficient for treatment of both wastewater samples. The characteristics of wastewater samples treated by a Fenton-based process at H2O2/COD weight ratio 0.5:1 complied with the discharge limits stated by regulations for wastewater directed to local sewerage. The Fenton-based process/lime post-coagulation scheme proved more efficient than ferric chloride pre-coagulation/Fenton-based process/lime post-coagulation system. The increase of H2O2/COD weight ratio to 2:1 resulted in 5 and 10% of residual COD and DOC, respectively. All studied processes and combined physicochemical treatment schemes, except single ozonation, resulted in toxicity reduction and biodegradability improvement in both wastewater samples. The operational costs of applied treatment schemes were calculated and indicated the Fenton-based process schemes as the most feasible and cost-effective.  相似文献   

8.
《分离科学与技术》2012,47(2):386-397
Abstract

This paper is concerned with the potential advantages of the use of polyferric chloride as a coagulant for the removal of natural organic matter (e.g., humic acid) in water treatment. In particular, this paper assesses the effects of the basic nature of polyferric chloride, the type of water, and the coagulation pH on the humic acid removal performance. The comparative dose demand of polyferric chloride and ferric chloride was assessed in terms of a good humic acid removal efficiency (> 50%) achieved. It was found that a polyferric chloride with a basic ratio of 0.3 can achieve the best humic acid removal. The water having both humic acid and colloidal particles was favorable to the floc development and a better humic acid removal. For the same coagulation conditions, the dose demand of polyferric chloride was 50% less than that of FeCl3 for a > 50% humic acid removal.  相似文献   

9.
Filtration and ultrafiltration with a size range of 2–1600 nm were used to evaluate the effect of ozonation on the particle size distribution‐based chemical oxygen demand (COD) and color profiles of textile wastewater before and after biological treatment. Ozonation induced a net effect of 9% COD reduction in the influent and 15% in the effluent. However, a more in‐depth evaluation based on particle size distribution and mass balance for the influent revealed different mechanisms of ozonation, which were interpreted as total oxidation in the soluble range, replenishment of soluble COD through solubilization of organics into simpler compounds and polymerization towards the upper size range (>220 nm). For the biological treatment effluent, the greatest effect of ozonation was in the lower particle size range (<8 nm). Ozone was very effective for color removal, giving 80–93% optical density reductions in the influent and 96–99% in the effluent, depending on the excitation wavelength selected. Ozonation of the influent removed practically all color fractions, except in the particulate range. In the effluent, the particulate fraction was removed by biological treatment and settling and consequently the remaining color were almost entirely removed by ozonation. Copyright © 2005 Society of Chemical Industry  相似文献   

10.
The continuous treatment of domestic wastewater by an activated sludge process and by an integrated biological–chemical (ozone) oxidation process were studied in this work. Chemical oxygen demand (COD), biochemical oxygen demand (BOD), absorbance at 254 nm (UV254) and nitrogenous compound content were the parameters followed in order to evaluate the performance of the two processes. Experimental data showed that both UV254 and COD reductions are improved in the combined biological–chemical oxidation procedure. Thus, reductions of 59.1% and 37.2% corresponding to COD and UV254, respectively were observed after the biological process (hydraulic retention time = 5 h; mixed liquor volatile suspended solids concentration = 3142 g m−3) compared with 71.0% and 78.4% obtained when a post‐ozonation step ( D O3 = 41.7 g m−3) was included. During conventional activated sludge treatment, appropriate nitrification levels are only achieved with high hydraulic retention time and/or biomass concentration. Ozonation after the secondary treatment, however, allows improved nitrogen content reduction with total nitrite elimination. Post‐ozonation also leads to a higher biodegradability of the treated wastewater. Thus, the ultimate BOD/COD ratio goes from 0.16 after biological oxidation to 0.34 after post‐ozonation with 41.7 g O3 m−3. © 1999 Society of Chemical Industry  相似文献   

11.
通过混凝和Fenton相结合的方法处理伪装涂料废水。以COD为考察指标,讨论了混凝剂的种类、投加量、pH、助凝剂的添加等因素对混凝实验的影响及pH、H_2O_2和FeSO_4投加量对Fenton氧化实验的影响。混凝-Fenton氧化法可有效地降低废水的COD,使其达到《污水排入城市下水道水质标准》(CJ 3082—1999)的排放要求(≤500mg/L),COD的总去除率可达98.7%。  相似文献   

12.
F. El-Gohary 《Desalination》2009,249(3):1159-149
This paper summarizes the results of disperse and reactive dyes wastewater treatment processes aiming at the destruction of the wastewater's color and chemical oxygen demand (COD) reduction by means of coagulation/flocculation (CF) followed by sequential batch reactor (SBR) process. The color removal efficiency of magnesium chloride aided with lime [MgCl2/CaO] was compared with that of alum [Al2 (SO4)3] and lime [Cao]. The experimental results showed that treatment with lime alone (600 mg/l) at pH value of 11.7 proved to be very effective. Color removal reached 100% and COD was reduced by 50%. Treatment with magnesium chloride aided with lime at pH value of 11 removed color completely and reduced the COD value by 40%. However, lime or lime in combination with magnesium chloride produced high amounts of sludge (1.84 kg/m3 for lime & 1.71 kg/m3 for MgCl2 aided with lime). Also, the pH of the treated effluent was around 11 and needs correction prior to discharge into sewer network. The use of 200 mg/l alum without pH adjustment removed 78.9% of the color. To improve the effectiveness of alum, the cationic polymer namely cytec was used as a coagulant aid. This significantly increased color removal from 78.9 up to 94% and COD reduction was around 44%. Moreover, sludge production was only 0.36 kg/m3. Chemically pre-treated effluent was subjected to SBR process at an HRT of 5.0 h. Residual CODtotal, total biochemical oxygen demand (BOD5 total) and total suspended solids (TSS) in the final effluent were 78 ± 7.7; 28 ± 4.2 and 17 ± 4.2 mg/l, corresponding to the removal efficiency of 68.2; 76.3 and 61.4% respectively. Furthermore, almost complete removal of CODparticulate and BOD5particulate has been achieved.  相似文献   

13.
This research explored the feasibility of preparing and utilizing preformed polymeric solution of Al(III) and Fe(III) as coagulants for water treatment. The differentiation and quantification of hydrolytic Al and Fe species in the coagulants were done by utilizing spectrophotometric method based on the interaction of Al or Fe with ferron as a complexing agent. In addition, 27A1-NMR, FT-IR, and powdered XRD were used to characterize the nature and structure of the hydrolytic species in these coagulants. The properties of the polyaluminum chloride (PAC1) and polymeric iron chloride (PIG) showed that the mass fractions of the maximum polymeric Al produced at r(OH/Al)=2.2 and Fe at r=1.5(OH/Fe) were 85% and 20% of the total aluminum and iron in solution, respectively. Coagulation tests were conducted under various coagulant dosages and pHs for each coagulant prepared. In case of PAC1 coagulants, a coagulation test on Nakdong river waters with three PACls (r=2.0, 2.2, 2.35) showed that the effectiveness of coagulation was in the order, r=2.2>2.0>2.35, corresponding to the order of polymeric aluminum contents. And, for the PIC1 coagulants, the PIC1 of r=1.5 was most effective for the removal of turbidity and TOC from the raw water. Presented at the Int’l Symp. on Chem. Eng. (Cheju, Feb. 8–10, 2001), dedicated to Prof. H. S. Chun on the occasion of his retirement from Korea University.  相似文献   

14.
Three types of wastewater, from commercial dyeings containing reactive, disperse and direct dyes were treated using an organic coagulant at pH 5.5 as a first step, with stirring for 5 min. The second step was oxidation by Fenton's reagent (hydrogen peroxide and iron(II) sulfate) at pH 2.5–3 for 30 min. The pH of the solution was then raised to 7.5–8 where coagulation by iron hydroxide took place over 20 min. Finally, sand filtration was performed. The percentage of color removal from treated wastewater was more than 99.00% and the percentage decrease in COD was more than 96.00%. © 2002 Society of Chemical Industry  相似文献   

15.
Single processes such as ozonation, ozone/hydrogen peroxide, Fenton and several combined treatment schemes were applied for leachate collected from a waste disposal site. The implementation of combined Fenton and ozonation processes resulted in the highest chemical oxygen demand removal (77% from initial value) among all the treatment methods applied, while biodegradability improvement was observed during the Fenton pre-treatment only. Some decrease of chemical oxygen demand was obtained during the single ozonation or combined schemes including ozone resulting in slight if any biodegradability improvement. The addition of hydrogen peroxide to ozonation did not enhance chemical oxygen demand, dissolved organic carbon or biochemical oxygen demand removal compared to ozone alone. Ferric chloride coagulation used as a pre-treatment stage did not improve subsequent chemical oxygen demand removal by ozonation or the Fenton processes. Taking into account the effective chemical oxygen demand, dissolved organic carbon removal and biodegradability improvement the single Fenton process seems to be a preferable treatment method for the leachate treatment. Some reduction in toxicity to Daphnia magna was observed after the application of the studied treatment methods.  相似文献   

16.
This study describes the treatment of textile wastewater by various combinations of physicochemical and membrane processes. The basic physicochemical treatment consists in coagulation/flocculation (CF) with different coagulant and flocculant concentrations. The parameters analyzed prior and after treatment are turbidity, chemical oxygen demand (COD) and absorbance (Abs). The optimal process parameters for CF are 5 for pH, 100 mg/l for coagulant (Al2(SO4) 3) of 100 mg/l and 4 mg/l for flocculant. This simple treatment by CF was inefficient concerning COD reduction and dyes deterioration. It was therefore combined with microfiltration (MF) or ultrafiltration (UF) on one hand and adsorption on powdered activated carbon (PAC) on the other. The CF/MF, CF/UF and CF/PAC combinations ensure a COD removal of 37%, 42% and more than 80% respectively and a color reduction of 65%, 74% and 50% respectively.  相似文献   

17.
Phenolic solutions are difficult to treat with coagulation processes because phenol is well soluble in water. However, with suitable preozonation, the ozonized organic components can be removed more effectively by coagulation processes. In order to avoid excessive preozonation, a good control on the degree of preozonation is crucial for practical applications. The degree of preozonation of phenolic solution was evaluated by measuring the phenol decomposition rate, ADMI value and ozone outlet concentration during the ozonation. Three characteristic times were observed, namely (1) ADMI value reaches the peak value during preozonation, (2) the ozone outlet concentration starts increasing, and (3) the ADMI value reaches the discharge standard (500 value, EPA Taiwan). These characteristic times provide the useful means as real-time control parameters on the extent of preozonation. The results of HPLC and GPC show that phenol is almost completely decomposed after 43?min of preozonation. The major components after preozonation are oxalic acid and coupling compounds. The preozonized solution, containing phenol decomposition products, was then subjected to coagulation treatments. The coagulation behavior of preozonized solution is dependent on the extent of preozonation. Three types of coagulant were investigated, namely alum, ferric chloride (FeCl3) and poly aluminum chloride (PAC). Both PAC and FeCl3 are effective coagulants for COD removal. As an example, phenol solution (initial phenol concentration=300?mg/L, C O 3,i=20?mg/L) was preozonized for 50 minutes, followed by FeCl3 coagulation treatment. After preozonation and coagulation processes, the total COD and ADMI removal rates are as high as 70% and 80%, respectively. Most of the coupling compounds and oxalic acid are removed by the coagulant.  相似文献   

18.
Batch experiments of coagulation/flocculation of biologically treated molasses wastewater were conducted to investigate the stoichiometric relationship between the concentration of melanoidins-dominated organics and the dosage of hydrolyzing metal salts (ferric chloride and aluminum sulfate). Wastewater samples were first fractionated by ultrafiltration. Jar tests were conducted to evaluate coagulation efficiency by measuring zeta potential, removal rates of color and chemical oxygen demand (COD). Experimental results indicate that the dissolved organic fraction accounts for predominant portion of the organic compounds present in biologically treated molasses effluent. A stoichiometric relationship exists between the concentration of melanoidins-based organic compounds and coagulant demand. When the change in solution conditions is proportional to that in organic concentration, such stoichiometric relationship still exists. On the other hand, no stoichiometry was observed between the concentration of melanoidins-dominated organics and the metal dosage when substantial changes in the nature of organics or solution conditions occur. The optimal dosage of ferric chloride expressed in terms of the ratio of metal to organic carbon removed was calculated as 0.73-0.81 g Fe3+/g COD.  相似文献   

19.
In the present study ozonation process was implemented to analyze the effect of ozonation time on the rate of chemical oxygen demand (COD) removal, mineralization and rate of decolorization of azo dyes. Three types of azo dyes i.e. Acid Red 14, Direct Red 28 and Reactive Black 5 were selected. Decolorization and mineralization of samples were conducted in batch scale. The COD and color removal efficiency were found to be increasing at a certain time of ozonation. The results with Acid Red 14, Congo Red and Reactive Black 5 dyes solutions lead to maximum COD reduction of 75%, 67% & 50% respectively. 93%, 92% and 94% color removal were achieved after 25 min of ozonation time of the same dyes which highlighted that ozonation process was found to be more efficient for reactive dye decolorization. Ozonation by-products analyzed by ion chromatography resulted that it partially mineralized with the formation of chloride, fluoride, sulphate, nitrate and oxalate ions. During ozonation process a rapid decrease in pH value indicated the acidic nature of by-products. The effect of buffered dye solutions on the ozonoation process highlighted that the decolorization efficiency decreases in comparison to unbuffered dye solutions. Ozonation led to enhancement of biodegradability ratio (BOD5/COD) and increased electrical conductivity of the dye solutions. Optimum ozonation time required for degradation of dye solutions reflected the evaluation of energy consumption and cost of the treatment after ozonation.  相似文献   

20.
焦化厂生化外排水的臭氧强化混凝实验研究   总被引:4,自引:1,他引:4  
针对某焦化厂废水生化处理系统中混凝沉淀效果不佳,出水COD过高的问题,采用多因素的优化正交实验设计,对焦化生化出水进行了臭氧辅助混凝的实验研究,确定了该废水混凝沉淀最适宜的混凝剂、搅拌条件、投加剂量以及臭氧预处理时间等。研究表明,适当时间的臭氧预处理可以很好的强化混凝沉淀效果,提高废水中COD的去除率和降低色度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号