首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The performance of a novel device has been tested. The device can be used as a collector cum storage type solar water heater during the winter, and, with minor adjustments, it can be used as a hot-box solar cooker. The device can provide hot water at 50–60°C in the evening, which can be maintained at 40–45°C until the following morning. It can also be used for cooking food for about 40 people. The efficiencies of the device as a solar water heater and as a solar cooker have been found to be 67.7% and 29.8%, respectively. The payback period varies between 1.64 to 5.90 years depending on the fuel it replaces. The payback periods are of increasing length with respect to the fuels firewood, coal, electricity, LPG and kerosene.  相似文献   

2.
A large size nontracking solar cooker has been designed, fabricated and tested. The cooker is based on the hot box principle. The cooker has been tested extensively and its performance has been compared with a solar oven, a hot box solar cooker and a solar cooker (tilted absorber). The stagnation temperatures are in increasing order for the hot box solar cooker, the solar cooker (tilted absorber), the large size nontracking solar cooker and the solar oven. The performance of this solar cooker is comparable with that of a solar oven. The former is not tracked towards sun while the latter is tracked every 30 min. The efficiency of a large size nontracking solar cooker is 24.9%. The energy saved by this new solar cooker has also been calculated and its payback period has been computed by considering interest, maintenance and inflation in fuel prices and maintenance cost. The payback periods are 1.10–3.63 years depending on which fuel it replaces. Relatively short payback periods show that the use of the cooker is economical, and it is easy to operate since no tracking is required.  相似文献   

3.
A double reflector hot box solar cooker with a Transparent Insulation Material (TIM) has been designed, fabricated, tested and the performance compared with a single reflector hot box solar cooker without TIM. A 40 mm thick honeycomb made of polycarbonate capillaries was encapsulated between two glazing sheets of the cooker to minimise convective losses from the window so that even during an extremely cold but sunny day two meals can be prepared, which is not possible in a hot box solar cooker without TIM. The use of one more reflectors resulted in an avoidance of tracking towards sun for 3 h so that cooking operations could be performed unattended, as compared to a hot box solar cooker where tracking ahead of the sun is required every hour. The efficiencies were 30.5% and 24.5% for cookers with and without a TIM respectively, during the winter season at Jodhpur. The energy saving by use of a solar cooker with TIM has been estimated to be 1485.0 MJ of fuel equivalent per year. The payback period varies between 1.66 and 4.23 y depending upon the fuel it replaces, and is in increasing order with respect to the following fuels: electricity, firewood, coal, LPG and kerosene. The estimated life is about 15 y. Therefore, the use of a solar cooker is economical. The double reflector hot box solar cooker with TIM will be a boon in popularising solar cookers in developing countries.  相似文献   

4.
The performance of a masonry animal feed solar cooker was evaluated in terms of energy and exergy. It is a low-cost cooker made of cement, bricks, glass covers and a mild steel absorber plate. The energy and exergy efficiencies of the animal feed solar cooker were experimentally evaluated. The energy output of this cooker ranges from 1.89 to 49.4 kJ, whereas the exergy output ranges from 0.11 to 2.72 kJ during the same time interval. The energy efficiency of the cooker varies between 1.12% and 29.78%, while the exergy efficiency varies between 0.07% and 1.52 % during the same period.  相似文献   

5.
This work focuses on the structure, working, and testing of a new mixed solar cooker using a linear Fresnel collector, evacuated tube and box-type cooker. The low-cost components used in the construction of this cooker can help it satisfy the needs of both urban and rural inhabitants who need steady cooking temperatures above 140°C. A family of five can prepare four meals using this modified solar cooker, which costs about $250. The designed solar cooker was tested by conducting no-load and full-load tests. For the no-load test, the maximum temperature of the absorber plate and oil for the new mixed cooker was recorded as 160.26°C and 172.72°C, respectively. The absorber plate of the new mixed cooker and its oil both reached their highest temperatures during the full-load test at 141.14°C and 157°C, respectively. The energy efficiency of the new cooker is 58.776%, while its exergy efficiency is 13%. The heat transfer coefficient increased to 100.16 W/m² °C. This cooker provides an additional time savings of 60 min. An improvement of 27.5% in the highest temperature reached was seen when the developed cooker's performance was compared with those reported in the literature. Additionally, the new cooker's heat-storing capability enables up to 3 h of autonomy. The Levelized Cost of Cooking a Meal for the innovative mixed solar cooker is $0.034 per meal.  相似文献   

6.
A box‐type solar cooker is designed and its thermal performance is analysed experimentally. The cooker tracks the sun in two axes, altitude and sun azimuth, by hand control for hourly periods. The experimental results show that the tested cooker may be assumed suitable in some cooking processes for specific country conditions. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
An efficient solar cooker has been designed, developed and tested. The device can be used for cooking, boiling and roasting of different foods in clear days. The important part of this new device is its stationary mode and maximum capture of energy through improved design and optimum tilt of the system. This new cooker has been found to be more practical in comparison to the simple hot-box type solar cooker, where one needs to direct it to follow the sun. The cooking trial shows that the new device can be used twice a day, even in winter days.  相似文献   

8.
In this paper thermal performance test experiments for first figure of merit (without load) and second figure of merit (with load) of a box‐type solar cooker were conducted as per Bureau of Indian Standards. The values of second figure of merit (F2) were determined for different loads of water and the results show that F2 depends on the quantity of water loaded in a solar cooker. Therefore, it is recommended that the performance test method should specify the amount of water which is to be taken. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

9.
A large-size solar cooker for animal feed has been designed, developed and tested. The cooker employs locally available materials of low cost, e.g. pearl-millet husk and horse excreata. The commercial materials required for its fabrication are plain glass, mild steel angle and sheet, wood and aluminium sheet cooking utensils. The solar cooker is capable of boiling 10 kg of animal feed, sufficient for five cattle per day. The efficiency of the solar cooker is 21·8%. The cost of the cooker is only Rs 1200, which can be recovered in 0·45-1·36 years depending upon the fuel it replaces. The short payback periods suggest that the use of the solar cooker is economic. The use of the cooker will save a lot of firewood, cowdung cake and agricultural waste which are presently used for the boiling of animal feed.  相似文献   

10.
This paper presents the fabrication details and on-field experimental studies of two novel solar cookers, suitable for cooking requirements of small families; these are named as small family solar cookers (SFSC-1 and SFSC-2). Small size, good thermal performance, light weight, low-cost and short payback periods are some important features of these cookers. The values of some essential thermal performance parameters, first figure of merit (F1), second figure of merit (F2) and standard cooking power suggested by Bureau of Indian Standards and International Standard for box-type solar cookers, have been evaluated by experimental studies and found to be 0.116°C m2/W, 0.466, 30 W and 0.118°C m2/W, 0.488, 50 W for SFSC-1 and SFSC-2, respectively. A comparative analysis of the thermal performances of SFSCs with the solar cookers, developed by many authors, has also been presented here. The payback periods with respect to different cooking fuels for SFSCs have been found to be reasonably short.  相似文献   

11.
This article provides the results and finding of an experimental work undertaken in the desert of Algeria. That aimed to compare experimental performance of a box-type solar cooker equipped with a finned absorber plate to a similar box-type cooker which absorber plate without fins. Tests have been carried out on the experimental platform of the Renewable Energies Research Unit in Saharan Environment of Algeria at Adrar. Adrar is located at a latitude 27° 53′ North and a longitude 0° 17′ West. Fins that have been used in solar air collectors enhanced heat transfer from absorber plate to air. Experimental tests have been undertaken as part of this project where was applied this phenomenon to a box-type solar cooker. The results of the experimental investigation have been rigorously analysed and showed that the stagnation temperature for box-type solar cooker equipped with a finned absorber plate was about 7% more than box-type solar cooker equipped with an ordinary absorber plate. The time required for heating water up to boiling temperature in both box-type solar cookers was reduced with about 12% when a finned absorber plate was used.  相似文献   

12.
The use of fossil fuel and wood for cooking poses health, environmental, and economic challenges, especially with the growing population. This has led to an increase in the trend towards the use of clean and sustainable cooking sources, including solar cookers. This experimental study aims to contribute by enhancing the performance of a solar box cooker (SBC) according to the concept of porous media via adding steel fibers inside the box as a modified SBC and comparing it with a conventional SBC. The stagnation test to determine the first figure of merit and the load test to determine the second figure of merit, standard boiling time, and cooker optothermal ratio were conducted under the outdoor conditions of Baghdad city. Also, an energy and exergy efficiency analysis, and calculating the rate of heat loss by three water loads heating and cooling tests. The results revealed that the modified SBC has a higher thermal performance than the conventional SBC.  相似文献   

13.
The performance of a low‐cost compound box‐reflector solar cooker designed and constructed by the department of Mechanical Engineering, at the University of Zimbabwe, was investigated and evaluated using a microcontroller‐based measurement system over a period of 3 months. Solar radiation and temperature measurements are sent directly to the computer for monitoring and subsequent analysis using a spreadsheet program. The system is connected to the computer through the RS232 port. Temperature was measured by LM335 temperature sensors, whereas solar radiation was measured by a Kipp & Zonen CM3 thermopile‐based pyranometer that was initially calibrated against the Eppley Precision Spectral Pyranometer. Peak temperatures of about 90°C for the food can be attained in about 5 h on a clear day in Bindura, Zimbabwe (18°S, 31°E). A standardized cooking power of 11 W and an overall efficiency of 15% were found for this cooker. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
刘杰  姜海波 《可再生能源》2012,30(3):118-121
为了优化偏远岛礁能源保障模式,通过分析柴油发电和可再生能源发电的分项费用特点,分别建立了这两种发电模式的费用表达式,并给出了可再生能源发电投资回收期和寿命期内节省费用的计算公式。以南海岛礁为例分析了太阳能和风能资源状况、柴油运输费用特点,以示例的形式探讨了光伏设备投资回收期与运输费用之间的关系,以及节省费用数额与运行时间之间的关系。研究表明,在偏远岛礁开发利用太阳能和风能资源在经济上具有可行性;岛礁距离越远,可再生能源设备投资回收期越短,节省的费用越多;在南海岛礁光伏发电设备投资回收期一般不超过8 a。  相似文献   

15.
介绍了一个吸收式太阳能制冷空调系统,该系统由太阳能集热器、吸收式制冷机组、辅助加热装置、智能控制器等部分组成。文章对该系统一年多的运行数据进行了采集和整理,针对夏季与冬季的典型工况进行了性能分析,并与常规空调进行了经济性对比,分析其投资回收期。  相似文献   

16.
Two simple solar cookers, one made of clay and locally available materials, and the other of exfoliated vermiculite and cement tiles, have been designed, fabricated and tested. The comparative performance of both cookers is described, and their efficiencies are 22.6 (clay) and 24.9% (vermiculite), respectively. The cookers are capable of boiling 2 kg of animal feed per day, and represent the equivalent of 1350 MJ of fuel per year at Jodhpur. Payback periods for solar cookers made of vermiculite tiles vary from 0.50 to 3.47 years, depending upon the fuel they replace. The shorter payback period suggests that the use of the cooker is economical.  相似文献   

17.
Many companies in India manufacture solar water heaters but these are not becoming popular in the domestic sector because of their high cost. The Ministry of Non-Conventional Energy Sources (MNES), New Delhi is recommending flat-plate collectors with copper (Cu) risers, headers and plate. Therefore, their cost is high. Long term studies have been carried out at the Central Arid Zone Research Institute, Jodhpur, to reduce the cost by replacing copper tubes with galvanised steel (G.S.) tube and copper plate with aluminium (Al) plate. The aluminium plate is wrapped over the G.S. tube by a special wire wound technique so that good contact of plate with risers and headers has been maintained. In this paper performance and testing of solar water heaters having G.S.–Al fin, Cu–Al fin and Cu–Cu fin in flat-plate collectors have been compared. It has been found that performance of all the three heaters is almost similar. The heater can provide 100 litres of hot water at an average temperature 62.0°C at 4 pm that can be retained to 50.4°C when average tap water temperature was 23.9°C. The efficiency of the heater is 51.9%. The cost of the heater with G.S.–Al collector is only Rs. 8,000.00 while it is Rs. 10,250.00 for solar water heaters with Cu–Cu collectors. The payback period of a solar water heater with G.S.–Al collector has been worked out by considering 10% compound annual interest, 5% maintenance cost, 5%, inflation in fuel prices and maintenance cost. The payback period varies between 2.92 years to 4.53 years depending upon which fuel it replaces. The payback periods are in increasing order with respect to fuels: electricity, firewood, LPG, charcoal, and kerosene.  相似文献   

18.
This paper introduces a new concept of Optimum Load Range (OLR) for solar cookers. OLR gives the load values for which cooker preferably shows good thermal as well as good cooking performance; it may be considered a crucial parameter for solar cookers. This OLR concept is based on the dependence of rate of rise of load temperature on different heat transfer processes between load and cooker interior. This concept illustrates solar cooking in two simple steps. The total time required to complete these steps puts an essential constraint for cooking of any load amount. The maximum value of load (upper limit of OLR) till which cooker shows satisfactory cooking may be determined from this constraint. This constraint requires determination of two OLR parameters which are tstep I and tstep II. The load for which cooker remain almost 30% efficient, may be referred as lower limit (minimum value) of OLR. For the verification of OLR, experimental studies have been conducted with a solar cooker named SFSC. The OLR parameters along with different thermal performance parameters (TPPs) (second figure of merit (F2), utilization efficiency (ηu) etc.) suggested by different researches for solar cookers in water load condition have been computed from the measured thermal profiles of different loads (0.8–3.0 kg). From the curve analysis of different TPPs with load, the existence of upper limit of OLR is observed. The values of rate of rise of load temperature at water temperatures 80, 85 and 90 °C for different loads also confirm the same. The OLR of SFSC is found to be 1.2–1.6 kg.  相似文献   

19.
20.
Various designs of solar cookers have been theoretically investigated with a view to optimize their performance. Starting from a conventional box type cooker, various combinations of booster mirrors have been studied to arrive at a final design, aimed at providing a cooker, which can be fixed on a south facing window (for countries of northern hemisphere, mainly situated near the tropic of Cancer). This cooker, with a rear window opening, may provide higher cooking temperature for a fairly large duration of the day. Two or three changes in positions of the side booster mirrors, without moving the cooker as a whole has been proposed. The new design has been experimentally implemented and compared with a conventional box type solar cooker. Besides the convenience of a rear window opening, the cooker provides temperatures sufficiently high to enable cooking two meals a day.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号