首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of blend ratio of natural rubber/epoxidized natural rubber (SMR L/ENR 25) and natural rubber/styrene‐butadiene rubber (SMR L/SBR) blends on scorch time (t2), cure time (t90), resilience, hardness, and fatigue properties were studied in the presence of carbon black and silica. An accelerated sulfur vulcanization system was used throughout the investigation. The scorch and cure times of the rubber compound were assessed by using a Moving‐Die Rheometer (MDR 2000). Resilience, hardness, and fatigue life were determined by using a Wallace Dunlop Tripsometer, a Wallace Dead Load Hardness Tester, and a Fatigue to Failure Tester, respectively. The results indicate that t2 and t90 decrease with increasing ENR 25 composition in the SMR L/ENR 25 blend whereas both values increase with increasing SBR content in the SMR L/SBR blend. This observation is attributed to faster cure in ENR 25 and higher saturation in SBR. Resilience decreases with increase in % ENR and % SBR but hardness shows the reverse behavior in their respective blends. The fatigue life increases with % ENR, but it passes through a maximum with % SBR in the respective blends. In all cases, aging lowers the fatigue life, a phenomenon that is caused by the breakdown of crosslinks in the vulcanizate. Differences in all the observed values between carbon black‐filled and silica‐filled blends are associated with the varying degrees of interaction and dispersion of the two fillers in the rubber blend matrix. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 47–52, 2001  相似文献   

2.
The scorch property of accelerated sulfur vulcanization of three grades of expoxidized natural rubber (viz. ENR 10, ENR 25, and ENR 50) was studied by using Mooney Shearing Disk Viscometer in the temperature range of 100–180°C. Effects of accelerator types, concentration of accelerator, and carbon black on ENR 10 were also determined. Results obtained indicate a similar scorch behavior as that reported earlier for SMR L. However, some differences in the magnitude of scorch times in the temperature and concentration studies are observed between ENR and SMR L. These differences are attributed to the activation of a double bond by the adjacent epoxide group in ENR, the effect being more significant for a higher degree of epoxidation of natural rubber. In the case of ENR 50, differential scanning calorimetry measurement suggests that additional crosslink occurs via a ring-opening reaction at about 155°C. Based on first-order reaction kinetics, the apparent activation energy of vulcanization for the rubbers studied is estimated and discussed.  相似文献   

3.
The effect of epoxidized natural rubber (ENR) or polyethylene acrylic acid (PEA) as a compatibilizer on properties of ethylene vinyl acetate (EVA)/natural rubber (SMR L) blends was studied. 5 wt.% of compatibilizer was employed in EVA/SMR L blend and the effect of compatibilizer on tensile properties, thermal properties, swelling resistance, and morphological properties were investigated. Blends were prepared by using a laboratory scale of internal mixer at 120°C with 50 rpm of rotor speed. Tensile properties, thermal properties, thermo-oxidative aging resistance, and oil swell resistance were determined according to related ASTM standards. The compatibility of EVA/SMR L blends with 5 wt.% of compatibilizer addition or without compatibilizing agent was compared. The EVA/SMR L blend with compatibilizer shows substantially improvement in tensile properties compared to the EVA/SMR L blend without compatibilizer. Compatibilization had reduced interfacial tension and domain size of ethylene vinyl acetate (EVA)/natural rubber (SMR L) blends.  相似文献   

4.
The effect of stearic acid on Mooney scorch time of epoxidized natural rubber (ENR 25 and ENR 50) and one grade of unmodified natural rubber (SMR L) was investigated in the concentration range of 0.5 to 14.5 phr. Other parameters, namely accelerator systems, temperature, and fillers (carbon black and silica), on the scorch property of ENR 25 in the presence of excess loading of stearic acid were also studied. Results indicate that scorch time increases with stearic acid loading for all the rubbers investigated, the rate of increase being fastest in ENR 50, followed by ENR 25 and SMR L. Mooney scorch time of ENR shows strong dependence on stearic acid loading for delay-action accelerators and at lower temperature of vulcanization. For a fixed filler loading, the dependence of scorch time on stearic acid concentration is similar to that of gum stock. The retardation effect exhibited by excess stearic acid on the vulcanization of ENR may be attributed to complex formation of chelates and the reduction in activation of adjacent double bonds in ENR resulting from interaction between stearic acid and the epoxide group of ENR. © 1995 John Wiley & Sons, Inc.  相似文献   

5.
A study of the temperature dependence of Mooney scorch time was carried out by using two grades of natural rubber, Hevea Brasiliensis(SMR L and SMR 10), and on synthetic rubber, styrene—butadiene rubber (SBR), in the temperature range of 100–180°C. Results show that the scorch time for SBR system is greater than that of the other grades of natural rubber. This is attributed to the lower degree of unsaturation in SBR. Effects of 2-mercaptobenzothiazole (MBT) and other types of accelerators on the scorch properties were also investigated and discussed. One black-filled compound was used to study the dependence of carbon black on the scorch property, and data indicate that the effect is more evident for temperature lower than 100°C.  相似文献   

6.
The effect of filler loading on the cure time (t90) and swelling behaviour of SMR L/ENR 25 and SMR L/SBR blends has been studied. Carbon black (N330), silica (Vulcasil C) and calcium carbonate were used as fillers and the loading range was from 0 to 40 phr. Results show that for SMR L/ENR 25 blends the cure time decreases with increasing carbon black loading, whereas silica shows an increasing trend, and calcium carbonate does not show significant changes. For SMR L/SBR blends, the cure time of carbon black, silica and calcium carbonate generally decreases with increasing filler loading. The percentage swelling in toluene and ASTM oil no 3 decreases for both blends with increasing filler loading, with calcium carbonate giving the highest value, followed by silica‐ and carbon black‐filled blends. At a fixed filler loading, SMR L/ENR 25 blend shows a lower percentage swelling than SMR L/SBR blends. © 2003 Society of Chemical Industry  相似文献   

7.
The adhesion properties, i.e. viscosity, tack, and peel strength of pressure-sensitive adhesives prepared from natural rubber/epoxidized natural rubber blends were investigated using coumarone-indene resin and toluene as the tackifier and solvent respectively. One grade of natural rubber (SMR 10) and two grades of epoxidized natural rubbers (ENR 25 and ENR 50) were used to prepare the rubber blends with blend ratio ranging from 0 to 100%. Coumarone-indene resin content was fixed at 40 parts per hundred parts of rubber (phr) in the adhesive formulation. The viscosity of adhesive was measured by a HAAKE Rotary Viscometer whereas loop tack and peel strength was determined using a Lloyd Adhesion Tester operating at 30 cm/min. Results show that the viscosity of the adhesive passes through a minimum value at 20% blend ratio. For loop tack and peel strength, it indicates a maximum at 60% blend ratio for SMR 10/ENR 25 and SMR 10/ENR 50 systems. However, for ENR 25/ENR 50 blend, maximum value is observed at 80% blend ratio. SMR 10/ENR 25 blend consistently exhibits the best adhesion property in this study, an observation which is attributed to the optimum compatibility between rubbers and wettability of adhesive on the substrate. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

8.
The effect of concentration of antioxidants on the Mooney scorch time of two grades of epoxidized natural rubbers (ENR 25 and ENR 50) and one grade of natural rubber (SMR L) was studied using a Monsanto automatic Mooney viscometer (MV 2000). Three types of antioxidants, viz., 2,2′‐methylene‐bis(4‐methyl, 6‐tertbutylphenol) (AO 2246), N‐isopropyl‐N′‐phenyl‐p‐phenylenediamine (IPPD) and poly‐2,2,4‐trimethyl‐1,2‐dihydroquinoline (TMQ) were used, and the concentration range was varied from 0 to 5 phr. The conventional vulcanization system with 2‐mercaptobenzothiazole (MBT) as the accelerator was used throughout the study. Results show that increasing the phenol‐based antioxidant (AO 2246) concentration will increase the scorch time of ENR at a lower temperature of vulcanization while its effect on SMR L is not significant. This retardation effect is attributed to the “solvation” of epoxide group by the phenolic group in AO 2246, thus reducing the activation of adjacent double bond in ENR. The scorch time, however, is shortened by the amine‐based antioxidants (IPPD and TMQ) for the three rubbers studied, a phenomenon associated with the ability of the amine group to enhance the formation of more active sulfurating agent and subsequently increases the cure rate as the concentration of the amine‐based antioxidants is increased. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2940–2946, 1999  相似文献   

9.
The effects of rice husk powder (RHP) loading and two types of natural rubber matrix (SMR L and ENR 50) on curing characteristics and mechanical properties were studied. The scorch time and cure time decreased with increasing RHP loading whereas maximum torque showed an increasing trend. SMR L composites possessed longer scorch time and cure time than ENR 50 composites. Incorporation of RHP into both rubbers improved tensile modulus significantly but decreased tensile strength and elongation at break. SMR L composites exhibited the lower tensile modulus and higher tensile strength and elongation at break than ENR 50 composites.  相似文献   

10.
Abstract

Epoxidised natural rubber (ENR) has been prepared and used as a blending ingredient together with a compatibiliser for blending of natural rubber (air dry sheet, ADS) and cassava starch. Mooney viscosities of the blends were quantified at 100°C and rheological properties in terms of shear stress and shear viscosity were plotted against shear rates. The results showed that pure ENR gave a lower Mooney viscosity, shear stress, and shear viscosity than blends with cassava starch. Mooney viscosity, shear stress, and shear viscosity for the blends increased with increasing levels of starch. At the same level of cassava starch blended, the highest values of these quantities were observed for the blends with ENR. The blend of ADS with ENR as a compatibiliser showed lower values than those of ENR itself, but higher than those of ADS with the starch. The results are described in terms of the level of chemical interaction between polar groups in ENR and in cassava starch. Curing behaviour for compounds of ENR, ADS, and ADS with ENR as a compatibiliser were studied. The results found that ENR exhibited a long delay (~ 10 min) before the vulcanisation took place compared with 1 min for ADS compounds. In the curing curve for ENR, an equilibrium value at maximum torque was not found indicating that the stiffness of the ENR compounds still increased with increasing testing time until 60 min. Stiffness of the ENR compounds also increased with increasing levels of cassava starch.  相似文献   

11.
The tensile strength and elongation at break of epoxidized natural rubber (ENR) blended with natural rubber (NR) was studied. ENR 25, ENR 50, and one grade of natural rubber (SMR L) were used as the elastomers. The composition of ENR was varied from 0% to 100% rubber. The accelerated sulfur vulcanization system was used throughout the investigation. The tensile property of unaged and aged samples was determined by using the Monsanto tensometer (T10) operating at 50 cm/min. Results show that the tensile strength and elongation at break passes through a maximum at 50% ENR for both ENR25/SMR L and ENR50/SMR L blends. This positive deviation from ideality is attributed to the mutual reinforcement of ENR and NR in the blends as a result of strain-induced crystallization. This synergistic effect is more pronounced in the case of ENR 25 due to the higher crystallinity and availability of more double bonds, which is more compatible to NR compared to ENR 50/NR blends. For the aged samples, a drop in the tensile property associated to the breakdown of the polysulfidic cross-link during aging is observed. A systematic study of the effect of sulfur concentration on the percentage retention of tensile property of the ENR blends after aging reveals that percentage retention decreases with increasing sulfur loading, which, in turn, enhances the formation of the polysulfidic cross-link; thus, more breakdown is observed in the rubber vulcanizate.  相似文献   

12.
The utilization of waste rubber powder in polymer matrices provides an attractive strategy for polymer waste disposal. Addition of recycled acrylonitrile‐butadiene rubber (NBRr) in rubber compounds gives economic (lowering the cost of rubber compounds) as well as processing advantages. In this study, the properties of styrene butadiene rubber (SBR)/NBRr blends with and without epoxidized natural rubber (ENR‐50) as a compatibilizer were determined. The results such as thermal gravimetric analysis (TGA), fatigue life, and natural weathering test of SBR/NBRr blends with and without ENR‐50 were carried out. Results showed that TG thermograms of SBR/NBRr blends with ENR‐50 show lower thermal stability compared blends without ENR‐50. The incorporation of ENR‐50 into SBR/NBRr blends has reduced char residue compared SBR/NBRr blends without ENR‐50. The incorporation of ENR‐50 in SBR/NBRr blends has increased the rigidity of the blends thus lowering the fatigue life. The increment in tensile properties retention of SBR/NBRr blends with ENR‐50 indicated the enhancement on weathering resistant. The surfaces of SBR/NBRr blends with ENR‐50 after 6 months exposure showed a minimal severity of crack compared with SBR/NBRr blends without ENR‐50. It revealed that the scale of cracks has reduced indicating well‐retaining interfacial adhesion between SBR and NBRr with the presence of ENR‐50 as a compatibilizer. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
Thermomechanical reclaiming of ground tire rubber (GTR) was performed at different temperatures (60, 120, and 180°C) using a co‐rotating twin‐screw extruder. Obtained samples were used in styrene‐butadiene rubber (SBR) blends. As reference samples, SBR compounds containing untreated GTR were used. Curing characteristics, static and dynamic mechanical properties, and morphology of the obtained blends were determined. The results show that the increase of barrel temperature during the thermomechanical reclaiming of GTR has a positive effect on the decrease of screw torque (lower machine load) and decrease of Mooney viscosity (better processing characteristics). However, mechanical properties and crosslink density of rubber revulcanizate decreased with increasing barrel temperature during the reclaiming process. SBR blends with 50 phr of reclaimed rubber showed increasing phase compatibility between SBR matrix and the reclaimed rubber, which was confirmed by mechanical properties and morphology measurements. J. VINYL ADDIT. TECHNOL., 22:213–221, 2016. © 2014 Society of Plastics Engineers  相似文献   

14.
The curing characteristics of unaccelerated sulfur vulcanization of ENR 25 and ENR 50 were studied in the temperature range from 100–180°C. The range of sulfur loading was from 1.5 to 6.5 phr. The scorch time was determined by Mooney Shearing Disk Viscometer whereas the initial cure rate, maximum torque, and reversion properties were obtained from the Moving Die Rheometer (MDR 2000). Results shows that ENR 25 gives a longer scorch time than ENR 50, an observation similar to that in an accelerated system reported earlier. For temperature < 120°C, scorch time depends exponentially on sulfur loading for both rubbers. However, this dependence diminishes as temperature is increased. This observation is attributed to the availability of activated sulfur molecules for vulcanization. The initial cure rate and maximum torque increases with increasing sulfur loading. ENR 50, however, exhibits higher value than ENR 25, suggesting faster cure in the former. For a fixed sulfur loading, reversion is a time and temperature-dependent phenomenon. It decreases with increasing sulfur loading because of the increase of cross-linking density for both rubbers stuided. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
The effect of irradiation on a 50/50 ethylene vinyl acetate/epoxidized natural rubber blend was studied. The 50/50 ethylene vinyl acetate/epoxidized natural rubber blend was prepared by mixing in a Brabender Plasticoder at 120°C. The blend was then irradiated by using a 3.0 MeV electron beam machine at doses ranging from 20 to 100 kGy in air and room temperature. The dynamic mechanical properties, tensile properties, hardness, and gel fractions of the blends were measured. It was found that the tensile strength, modulus, and hardness of the blend increased with irradiation with a concomitant decline in elongation at break. Results on the gel fraction revealed that under the irradiation conditions employed, the EVA/ENR blend crosslinked by electron beam irradiation. The addition of TMPTA and Surlyn ionomer was found to be effective in increasing the degree of crosslinking.  相似文献   

16.
The effect of filler loading and epoxidation on curing characteristics, dynamic properties, tensile properties, morphology, and rubber-filler interactions of paper-sludge-filled natural rubber compounds have been studied. Two different types of natural rubber, SMR L and ENR 50, having 0% and 50% of epoxidation and conventional vulcanization were used. Paper sludge was used as a filler and the loading range was from 0 to 40 phr. Compounding was carried out using a laboratory-sized two-roll mill. The scorch time for both rubber compounds decreased with filler loading. The cure time was found to decrease with increasing filler content for SMR L vulcanizates, whereas for ENR 50, the cure time seemed to be independent of the filler loading. Dynamic properties, i.e., maximum elastic torque, viscous torque, and tan delta, increase with filler loading in both grades of natural rubber. Results also indicate that both rubbers show increment in tensile modulus but inverse trend for elongation at break and tensile strength. However, for a fixed filler loading, ENR 50 compounds consistently exhibit higher maximum torque, modulus at 100% elongation, and modulus at 300% elongation, but lower elongation at break than SMR L compounds. In the case of tensile strength, ENR 50 possesses higher tensile strength than SMR L at 10 to 20 phr, but the difference is quite small at 30 and 40 phr. These findings might be associated with better rubber-filler interaction between the polar hydroxyl group of cellulose fiber and the epoxy group of ENR 50.  相似文献   

17.
The effects of palm oil fatty acid concentration (0, 1, 3, 5, 7 phr) and epoxidation on curing characteristics, reversion and fatigue life of carbon black filled natural rubber compounds have been studied. Three different types of natural rubber, SMR L, ENR 25 and ENR 50 having 0, 25 and 50 mol% of epoxidation and conventional sulphur vulcanization were used. The cure time t90, scorch time t2, MHRML (maximum torque − minimum torque) and fatigue life of all rubbers were found to increase with increasing palm oil fatty acid concentration. However, the reversion of all rubbers decreases with increasing palm oil fatty acid concentration. At similar concentrations of palm oil fatty acid, ENR 50 compounds exhibit the shortest scorch and cure times followed by ENR 25 and SMR L compounds. For reversion, SMR L compounds show the lowest value followed by ENR 50 and ENR 25 compounds, whereas for fatigue life, the highest value is obtained with ENR 50 compounds followed by ENR 25 and SMR L compounds. © 1999 Society of Chemical Industry  相似文献   

18.
This study sought to develop novel elastomeric compounds using natural rubber (NR) and ultra-low-density polyethylene (ULDPE). Blends were prepared by means of a two-roll mill for three ratios (70/30, 60/40, and 50/50 NR/ULDPE). Conventional vulcanization was performed in a compression mold. The physical and mechanical properties of the blend were determined according to ASTM standards. The results were compared with those obtained from NR blended with styrene-butadiene rubber (SBR). The morphological examinations with scanning electron microscopy indicated that ULDPE was compatible with NR; thus, the addition of a compatibilizer was not necessary. The cocontinuous phase was dominant in the NR/ULDPE blend containing 50 and 60 wt % NR. The tensile properties, tear resistance, and aging resistance of the NR/ULDPE blends were found to be superior to those of NR/SBR blends. On the other hand, the abrasion and flex cracking resistances of the NR/ULDPE blend were inferior to those exhibited by SBR blends but the Mooney viscosity and resilience of both blends fell in the same range. However, the addition of dicumyl peroxide appeared to have caused crosslinking of the ULDPE phase in the blend, which in turn increased the tensile properties and abrasion and aging resistance. The properties of the tertiary NR/SBR/ULDPE blend were investigated as well. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 650–660, 2001  相似文献   

19.
The effect of sodium carbonate on the Mooney scorch time and cure index of epoxidized natural rubber (ENR 50) was studied with concentrations of 0–2 phr and 100–160°C temperatures. A conventional vulcanization system based on an ASTM formulation was used throughout the investigation on the gum and carbon black filled rubber compound. The results indicated that the scorch time and cure index for the gum and filled compounds increased to a maximum value at 0.15 phr of sodium carbonate, and further loading of sodium carbonate caused it to decrease. This observation was attributed to the neutralization of the residual acid in ENR 50 in the initial stage, thus reducing the formation of ether crosslinks via an acid‐catalyzed ring‐opening reaction with the epoxide group in ENR 50. However, as the sodium carbonate was increased beyond 0.15 phr, the excess sodium carbonate enhanced the vulcanization rate as shown by the drop of the scorch time and cure index. The peak maximum was more evident at lower temperature and its peak height decreased with increasing temperature, suggesting that the neutralization effect by sodium carbonate was overshadowed by the faster cure rate resulting from the availability of thermal energy to overcome the activation energy of vulcanization as the temperature was elevated. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1352–1355, 2001  相似文献   

20.
Novel degradable materials based on ternary blends of natural rubber (NR)/linear low-density polyethylene (LLDPE)/thermoplastic starch (TPS) were prepared via simple blending technique using three different types of natural rubber (i.e., unmodified natural rubber (RSS#3) and ENR with 25 and 50 mol% epoxide). The evolution of co-continuous phase morphology was first clarified for 50/50: NR/LLDPE blend. Then, 10 wt% of TPS was added to form 50/40/10: NR/LLDPE/TPS ternary blend, where TPS was the particulate dispersed phase in the NR/LLDPE matrix. The smallest TPS particles were observed in the ENR-50/LLDPE blend. This might be attributed to the chemical interactions of polar functional groups in ENR and TPS that enhanced their interfacial adhesion. We found that ternary blend of ENR-50/LLDPE/TPS exhibited higher 100 % modulus, tensile strength, hardness, storage modulus, complex viscosity and thermal properties compared with those of ENR-25/LLDPE/TPS and RSS#3/LLDPE/TPS ternary blends. Furthermore, lower melting temperature (T m) and heat of crystallization of LLDPE (?H) were observed in ternary blend of ENR-50/LLDPE/TPS compared to the other ternary blends. Also, neat TPS exhibited the fastest biodegradation by weight loss during burial in soil for 2 or 6 months, while the ternary blends of NR/LLDPE/TPS exhibited higher weight loss compared to the neat NR and LLDPE. The lower weight loss of the ternary blends with ENR was likely due to the stronger chemical interfacial interactions. This proved that the blend with ENR had lower biodegradability than the blend with unmodified NR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号