首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We analyse the potentials of selected efficient appliances (EAs) for air pollutant mitigation and reducing the need for rapidly escalating power generation in India from the national, utility and user perspectives. The study shows that about 10.1% of total cumulative generation and about 7.4, 8.7 and 9.8% of total cumulative CO2, SO2 and NOx emissions, respectively, could be avoided between 1997 and 2015 by using EAs. At currently prevailing electricity and appliance prices, cost-effective levels of avoided generation and air pollutant mitigation potentials are significantly lower from the users' viewpoint. The level of air pollutant mitigation would be significantly higher if an efficient electricity pricing policy were adopted and if relatively low interest loans were available for the purchase of EAs.  相似文献   

2.
The power sector in India at present comprises of five separate regional electricity grids having practically no integrated operation in between them. This study analyses the utility planning, environmental and economical effects of integrated power sector development at the national level in which the regional electric grids are developed and operated as one integrated system. It also examines the effects of selected CO2 emission reduction targets in the power sector and the role of renewable power generation technologies in India. The study shows that the integrated development and operation of the power system at the national level would reduce the total cost including fuel cost by 4912 million $, total capacity addition by 2784 MW, while the emission of CO2, SO2 and NOx would be reduced by 231.6 (1.9%), 0.8 (0.9%), 0.4 (1.2%) million tons, respectively, during the planning horizon. Furthermore, the study shows that the expected unserved energy, one of the indices of generation system reliability, would decrease to 26 GWh under integrated national power system from 5158 GWh. As different levels of CO2 emission reduction targets were imposed, there is a switching of generation from conventional coal plants to gas fired plants, clean coal technologies and nuclear based plants. As a result the capacity expansion cost has increased. It was found that wind power plant is most attractive and economical in the Indian perspective among the renewable options considered (Solar, wind and biomass). Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
Malaysia and Indonesia benefit in various ways by participating in CDM and from investments in the GHG emission reduction projects, inter alia, technology transfer such as carbon capture (CC) technology for the existing and future coal fired power plants. Among the fossil fuel resources for energy generation, coal is offering an attractive solution to the increasing fuel cost. The consumption of coal in Malaysia and Indonesia is growing at the fastest rate of 9.7% and 4.7%, respectively, per year since 2002. The total coal consumption for electricity generation in Malaysia is projected to increase from 12.4 million tons in 2005 to 36 million tons in 2020. In Indonesia, the coal consumption for the same cause is projected to increase from 29.4 million tons in 2005 to 75 million tons in 2020. CO2 emission from coal fired power plants are forecasted to grow at 4.1% per year, reaching 98 million tons and 171 million tons in Malaysia and Indonesia, respectively.  相似文献   

4.
Due to the rapid economic development, living standards in China are improving fast. Chinese families are having more household electrical appliances, among which refrigerators are indispensable. Energy consumption of refrigerators is huge in China and causes environmental concerns. China has issued the national energy efficiency standards of household refrigerators, GB12021.2-2003 and GB12021.2-2008 to promote high-efficiency refrigerator production and use. This study evaluated the impacts of the standards on the environment, manufacturers and consumers over a long-term period of 2003–2023. It first evaluated the potential electricity conservation and GHG emission reduction resulting from energy efficiency improvements driven by the standards. Next, manufacturers’ technological and economic concerns about complying with the standards were discussed. Some efficiency improving design options were considered and the resulting increases in manufacturing cost and retail price were estimated. The return of consumers from invest in efficiency was analyzed based on lifecycle cost saving of the improved models. The economical viability of the standards was then evaluated by national consumer costs and benefits. Results showed that the considered efficiency standards will potentially save a cumulative total of 588–1180 TWh electricity, and reduce emission of 629–1260 million tons of CO2, 4.00–8.04 million tons of SOx and 2.37–4.76 million tons of NOx by 2023, depending on sale share of models by efficiency. In a more environmentally optimal case (75% sale share of high-efficiency models), the national consumer benefits are 121 billion RMB (discounted), with the benefit/cost ratio of consumer’s expenditure being 1.45:1. However, the preference to high-efficiency models is substantial influenced by consumer’s expectation on return from the additional cost on efficiency.  相似文献   

5.
This paper presents estimated external costs of electricity generation in China under different scenarios of long-term energy and environmental policies. Long-range Energy Alternatives Planning (LEAP) software is used to develop a simple model of electricity demand and to estimate gross electricity generation in China up to 2030 under these scenarios. Because external costs for unit of electricity from fossil fuel will vary in different government regulation periods, airborne pollutant external costs of SO2, NOx, PM10, and CO2 from fired power plants are then estimated based on emission inventories and environmental cost for unit of pollutants, while external costs of non-fossil power generation are evaluated with external cost for unit of electricity. The developed model is run to study the impact of different energy efficiency and environmental abatement policy initiatives that would reduce total energy requirement and also reduce external costs of electricity generation. It is shown that external costs of electricity generation may reduce 24–55% with three energy policies scenarios and may further reduce by 20.9–26.7% with two environmental policies scenarios. The total reduction of external costs may reach 58.2%.  相似文献   

6.
This paper discusses the opportunities that exist for reducing greenhouse gases (GHG) emissions by switching from coal to gas‐fired units in electricity generation, ‘forced’ by the European Union Greenhouse Gas Emission Trading Scheme (EU ETS) price level of CO2. It attempts to find efficient GHG cost profiles leading to a reasonable GHG emission reduction. In a methodological demonstration case (an electricity generation system consisting of two coal and two gas‐fired power plants), we demonstrate how a GHG emission cost can lead to a certain switch of power plants with an accompanying GHG emission reduction. This GHG emission cost is dependent on the load level. The switching point method is applied to an electricity generation system similar to the Belgian one. It is found that the greatest opportunities for GHG emission reductions are situated in the summer season. By switching only the coal‐fired units with the combined cycle (CC) gas‐fired units, a significant GHG emission reduction is possible at a modest cost. With the simulation tool E‐Simulate, the effect of a GHG emission cost in the summer season is investigated. A potential GHG emission reduction of 9.5% in relation to the case where there is no cost linked to GHG emission is possible at a relative low cost. When implementing a GHG cost in winter season, a smaller GHG reduction occurs while costs are higher. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
This paper analyses the potential of renewable energy for power generation and its energy, environmental and economic implications in Pakistan, using a bottom up type of long term energy system based on the MARKAL framework. The results show that under a highly optimistic renewable portfolio standard (RPS) of 80%, fossil fuel consumption in 2050 would be reduced from 4660 PJ to 306 PJ, and the GHG emissions would decrease from 489 million tons to 27 million tons. Nevertheless, price of the electricity generation will increase significantly from US$ 47/MWh under current circumstances (in the base case) to US$ 86/MWh under RPS80. However the effects on import dependency, energy-mix diversity, per unit price of electricity generation and cost of imported fuels indicate that, it may not be desirable to go beyond RPS50. Under RPS50 in 2050, fuel consumption of the power sector would reduce from 21% under the base case to 9% of total fossil fuels supplied to the country. It will decrease not only GHG emission to 170 million tons but also will reduce import dependency from 73% under the base case to 21% and improve energy diversity mix with small increase in price of electricity generation (from US$ 47/MWh under the base case to US$ 59/MWh under RPS 50).  相似文献   

8.
In this study, electricity generation associated CO2 emissions and fuel-specific CO2 emission factors are calculated based on the IPCC methodology using the data of fossil-fueled power plants that ran between 2001 and 2008 in Turkey. The estimated CO2 emissions from fossil-fueled power plants between 2009 and 2019 are also calculated using the fuel-specific CO2 emission factors and data on the projected generation capacity of the power plants that are planned to be built during this period. Given that the total electricity supply (planned+existing) will not be sufficient to provide the estimated demand between 2011 and 2019, four scenarios based on using different fuel mixtures are developed to overcome this deficiency. The results from these scenarios show that a significant decrease in the amount of CO2 emissions from electricity generation can be achieved if the share of the fossil-fueled power plants is lowered. The Renewable Energy Scenario is found to result in the lowest CO2 emissions between 2009 and 2019. The associated CO2 emissions calculated based on this scenario are approximately 192 million tons lower than that of the Business As Usual Scenario for the estimation period.  相似文献   

9.
There is a trade-off between cost and emission minimizing objectives for electricity generation because of the measures needed to reduce emissions. For SO2 emissions reduction these are adjustment within the system which involve deviation from the least-cost generation schedule, changing power mix for future capacity and installation of abatement equipments, e.g. flue gas desulfurization unit. The linear programming modelling framework (INGRID) presented here brings out the nature of this trade-off for SO2 emissions reduction from the Indian power system for existing capacity and future capacity addition. The adjustment within the existing system can take place through integrated optimal operations of various electricity utilities by substituting generation of more polluting plants by less emitting efficient plants as long as the cost of reduction is lower than that of flue gas desulfurization.  相似文献   

10.
In this paper, different electricity demand scenarios for Spain are presented. Population, income per capita, energy intensity and the contribution of electricity to the total energy demand have been taken into account in the calculations. Technological role of different generation technologies, i.e. coal, nuclear, renewable, combined cycle (CC), combined heat and power (CHP) and carbon capture and storage (CCS), are examined in the form of scenarios up to 2050. Nine future scenarios corresponding to three electrical demands and three options for new capacity: minimum cost of electricity, minimum CO2 emissions and a criterion with a compromise between CO2 and cost (CO2-cost criterion) have been proposed. Calculations show reduction in CO2 emissions from 2020 to 2030, reaching a maximum CO2 emission reduction of 90% in 2050 in an efficiency scenario with CCS and renewables. The contribution of CCS from 2030 is important with percentage values of electricity production around 22–28% in 2050. The cost of electricity (COE) increases up to 25% in 2030, and then this value remains approximately constant or decreases slightly.  相似文献   

11.
Depleting fossil fuels and the pollution resulting from their consumption indicate an urgent need for clean and dependable alternatives such as renewable energies. Biomass is a free and abundant source of renewable energy. Municipal solid waste (MSW) as one of the main categories of biomass has always been an issue for metropolitan cities. It has, however, a high potential for biogas production. In this study, the technical and economic aspects of generating electrical power through solid oxide fuel cells (SOFCs) powered by injecting biogas derived from Tehran's MSW, as a case study, are investigated. The main objectives of the current study are to identify the power generation capability of the process and find out if it can result in a competitive energy resource. The total amount of obtainable methane through anaerobic digestion of MSW and then the achievable power generation capacity by using the obtained biogas are computed using the electrochemical relations inside the SOFC. The economic calculations are carried out to estimate the final price of the generated electricity, taking into account the major capital and ongoing costs of the required equipment. The effect of variations of MSW composition on the power generation capability and final electricity price is also studied. Moreover, the application of a gas turbine (GT) with the SOFC as a hybrid SOFC–GT system to recover the produced heat by SOFC and its effect on the power generation capability and the final electricity price are investigated. Results indicate that around 997.3 tons day?1 biomethane can be generated using Tehran's MSW. By using the SOFC, the produced biogas can generate 300 MWAC electrical power with a final cost of Depleting fossil fuels and the pollution resulting from their consumption indicate an urgent need for clean and dependable alternatives such as renewable energies. Biomass is a free and abundant source of renewable energy. Municipal solid waste (MSW) as one of the main categories of biomass has always been an issue for metropolitan cities. It has, however, a high potential for biogas production. In this study, the technical and economic aspects of generating electrical power through solid oxide fuel cells (SOFCs) powered by injecting biogas derived from Tehran's MSW, as a case study, are investigated. The main objectives of the current study are to identify the power generation capability of the process and find out if it can result in a competitive energy resource. The total amount of obtainable methane through anaerobic digestion of MSW and then the achievable power generation capacity by using the obtained biogas are computed using the electrochemical relations inside the SOFC. The economic calculations are carried out to estimate the final price of the generated electricity, taking into account the major capital and ongoing costs of the required equipment. The effect of variations of MSW composition on the power generation capability and final electricity price is also studied. Moreover, the application of a gas turbine (GT) with the SOFC as a hybrid SOFC–GT system to recover the produced heat by SOFC and its effect on the power generation capability and the final electricity price are investigated. Results indicate that around 997.3 tons day?1 biomethane can be generated using Tehran's MSW. By using the SOFC, the produced biogas can generate 300 MWAC electrical power with a final cost of $0.178 kWh?1. By using the hybrid SOFC–GT, the electrical power capacity is increased to 525 MWAC, and the final electricity cost drops to $0.11 kWh?1, which indicates its competitiveness with other common energy resources in the near future, especially by considering different governmental subsidy policies that support renewable energy resources. The considerable environmental benefits of the proposed procedure, from both MSW management and CO2 emission reduction points of view, make it a promising sustainable energy resource for the future. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
《Applied Energy》1999,63(1):35-52
It is estimated from GEF statistical data for 1991 that more than 500,000 industrial boilers (mostly stoker-fired) in China consume over 400 million tons of coal per year. Each year, because of low boiler efficiency, 75 million tons of coal is wasted and 130 million tons of excess CO2 are emitted. An analysis of 250 boiler thermal-balance test certificates and 6 field visits in three provinces have shown that: (1) boilers with efficiencies of less than 70% account for 75% of the total boiler-population; (2) the main causes of the low efficiencies are high excess air and unburned carbon in the slag and fly ash. The effect of unburned carbon on CO2 emission is a balance of positive and negative contributions: while the unburned carbon does not produce CO2 emissions, its replacement carbon, burned at a low efficiency, contributes to a net increase in CO2 emissions. It seems from the analysis that the average boiler efficiency can be raised to 73% by relatively simple means, such as the size grading of the coal, improved boiler operating practice and some inexpensive equipment modifications. This could then result in savings each year of 34 million tons of coal and a reduction in CO2 emissions of 63 million tons at an estimated cost of $10 per ton of CO2.  相似文献   

13.
Abstract

The rapid development of Chinese economy demands sustainable growth of power generation to meet industrial and domestic demand. The total installed capacity of electricity and annual overall electricity generation are now both the second highest in the world, close to those of the USA. Forecasts of China's electricity demand over the period 2010–20 are presented. Chinese power plants, like those worldwide, are facing demands to increase thermal efficiency and to decrease the emission of CO2, SOX and NOX. In light of the national resource of coal and electricity market requirements in the next 15 years, power generation – especially ultrasupercritical (USC) power plants with the steam temperature over 600°C – will undergo rapid development. The first 1000 MW USC power unit, with steam parameters 600°C, 26·25 MPa, entered service in November 2006. It is estimated that more than 350 USC power units will be installed in China by 2020. USC power plant designs will adopt a variety of qualified high temperature materials for boiler and turbine manufacturing applications. Among these materials, the modified 9–12%Cr ferritic steels, Ni–Cr austenitic steels and certain nickel base superalloys have received special attention in the Chinese materials market.  相似文献   

14.
Electricity generation in China mainly depends on coal and its products, which has led to the increase in CO2 emissions. This paper intends to analyze the current status of CO2 emissions from electricity generation in China during the period 1991–2009, and apply the logarithmic mean Divisia index (LMDI) technique to find the nature of the factors influencing the changes in CO2 emissions. The main results as follows: (1) CO2 emission from electricity generation has increased from 530.96 Mt in 1991 to 2393.02 Mt in 2009, following an annual growth rate of 8.72%. Coal products is the main fuel type for thermal power generation, which accounts for more than 90% CO2 emissions from electricity generation. (2) This paper also presents CO2 emissions factor of electricity consumption, which help calculate CO2 emission from final electricity consumption. (3) In China, the economic activity effect is the most important contributor to increase CO2 emissions from electricity generation, but the electricity generation efficiency effect plays the dominant role in decreasing CO2 emissions.  相似文献   

15.
It is becoming more important to realize CO2‐capturing power generation systems (PGSs) for drastically decreasing an amount of CO2 emission into the atmosphere. However, net power generation efficiency (NPGE) of a CO2‐capturing system has been considered to be greatly deteriorated, since capturing CO2 requires extra energy. This paper proposes a new CO2‐capturing PGS that has a high‐efficient NPGE by utilizing waste heat from factories. As an example of a waste heat, exhaust gas with temperature 200°C from refuse incinerator plants is adopted. In the proposed system, the temperature of saturated steam produced by utilizing the waste heat is raised by combusting fuel with the use of pure oxygen in a combustor, and is used as the main working fluid of a gas turbine PGS. It is estimated that the proposed system has a fuel‐to‐electricity NPGE of 59.3%, when turbine inlet temperature (TIT) is assumed to be 1000°C. The economics of the proposed system is also evaluated and the CO2 reduction cost is estimated to be small; 4.16 U.S. $ t−1 CO2 compared with 32.1 U.S. $ t−1 CO2 for a conventional steam turbine PGS. It is shown that CO2‐capturing is not cost consuming but becomes to be profitable owing to improved power generation characteristics, when its TIT is increased from 1000 to 1200°C. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Evaluating carbon dioxide emissions in international trade of China   总被引:3,自引:0,他引:3  
China is the world's largest emitter of carbon dioxide (CO2). As exports account for about one-third of China's GDP, the CO2 emissions are related to not only China's own consumption but also external demand. Using the input–output analysis (IOA), we analyze the embodied CO2 emissions of China's import and export. Our results show that about 3357 million tons CO2 emissions were embodied in the exports and the emissions avoided by imports (EAI) were 2333 million tons in 2005. The average contribution to embodied emission factors by electricity generation was over 35%. And that by cement production was about 20%. It implies that the production-based emissions of China are more than the consumption-based emissions, which is evidence that carbon leakage occurs under the current climate policies and international trade rules. In addition to the call for a new global framework to allocate emission responsibilities, China should make great efforts to improve its energy efficiency, carry out electricity pricing reforms and increase renewable energy. In particular, to use advanced technology in cement production will be helpful to China's CO2 abatement.  相似文献   

17.
The Global MARKAL-Model (GMM), a multi-regional “bottom-up” partial equilibrium model of the global energy system with endogenous technological learning, is used to address impacts of internalisation of external costs from power production. This modelling approach imposes additional charges on electricity generation, which reflect the costs of environmental and health damages from local pollutants (SO2, NOx) and climate change, wastes, occupational health, risk of accidents, noise and other burdens. Technologies allowing abatement of pollutants emitted from power plants are rapidly introduced into the energy system, for example, desulphurisation, NOx removal, and CO2 scrubbers. The modelling results indicate substantial changes in the electricity production system in favour of natural gas combined cycle, nuclear power and renewables induced by internalisation of external costs and also efficiency loss due to the use of scrubbers. Structural changes and fuel switching in the electricity sector result in significant reduction of emissions of both local pollution and CO2 over the modelled time period. Strong decarbonisation impact of internalising local externalities suggests that ancillary benefits can be expected from policies directly addressing other issues then CO2 mitigation. Finally, the detailed analysis of the total generation cost of different technologies points out that inclusion of external cost in the price of electricity increases competitiveness of non-fossil generation sources and fossil power plants with emission control.  相似文献   

18.
Wen-Tien Tsai  Kuan-Chi Kuo 《Energy》2010,35(12):4824-4830
Heavily (about 99%) depending on imported energy, Taiwan, a country in the subtropics, has limited natural resources. In this regard, biomass energy from (MSW) municipal solid waste incineration plants thus became attractive during the 1990s. The objective of this paper is to present a comprehensive analysis of MSW-to-energy in Taiwan. This paper gave a concise summary of current status of domestic energy consumption &; power generation, MSW generation &; MSW incineration treatment, and electricity generation from MSW incineration plants since 2000. Based on the electricity generation in 2008 (i.e., 2967 GWh), the environmental benefit of mitigating CO2 emissions and the economic benefit of selling electricity were preliminarily calculated to be around 1.9 × 106 tons and US$ 1.5 × 108, respectively. However, since the heat content of incinerated MSW and the methodologies were used on the recommendation of the (IPCC) Intergovernmental Panel on Climate Change, the net emissions of CO2 equivalent from methane (CH4) &; nitrous oxide (N2O) have been estimated to be at around 76,000 and 88,000 tons/year compared to coal and oil, respectively.  相似文献   

19.
Electricity generation accounts for 40% of CO2 emissions from fossil fuel combustion in the United States. Section 111 of the Clean Air Act (CAA) allows for greenhouse gas emission regulation by the US Environmental Protection Agency (EPA). In June 2014, EPA issued the Clean Power Plan that proposes regulation of existing power plants via a “best system of emission reduction” or BSER. Reducing carbon dioxide emissions caused by electricity generation is one of the main motivations for increasing wind power and other renewable energy use, and this option is included in the BSER. This paper applies Monte Carlo simulation with a two-stage power flow optimization framework to analyze the potential CO2 emission reduction with 10% and 20% wind penetration using the proposed BSER. The results show that EPA's BSER does achieve significant emission reduction, but an increase in cost of electricity and load curtailment can result if significant wind is installed without other measures. These concerns are eliminated by including recourse to real-time demand response along with EPA's BSER, suggesting that the proposed BSER, implemented alone, could be insufficient for reaching EPA's target CO2 reductions while also safeguarding power system reliability and cost.  相似文献   

20.
The Energy Star label program to promote the diffusion of energy efficient home appliances is arguably the most significant government effort to reduce U.S. residential energy consumption. Program effectiveness requires that consumers are aware of the labeling scheme and also change their purchase decisions based on label information. This paper examines the factors associated with consumer awareness of the Energy Star label of recently purchased ‘white’ major appliances and the factors associated with the choice of Energy Star labeled appliances. The paper finds that household characteristics have a much stronger association with consumer awareness of labels than with the choice of Energy Star appliances. Renting the home, Hispanic ethnicity, being poor or near poor, and living in regions with lower ACEEE scores do, however, decrease the propensity for households to purchase Energy Star appliances. Eliminating these gaps in Energy Star appliance adoption would result in house electricity cost savings of $164 million per year and associated carbon emission reductions of about 1.1 million metric tons per year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号