首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rheology, morphology, and mechanical properties of blends of high‐density polyethylene (HDPE) with a semiflexible liquid crystalline copolyester (SBH) were studied in order to assess the compatibilizing ability of added PE‐g‐SBH copolymers, and its dependence on the molar mass of the PE matrix, and on the technique used for blend preparation. The PE‐g‐SBH copolymers were synthesized as described in previous articles, either by the polycondensation of the SBH monomers in the presence of a functionalized PE sample containing free carboxyl groups, or by reactive blending of the latter polymer with preformed SBH. Two samples of HDPE having different molar masses, and two samples of SBH with different melt viscosity and different microstructure, were used for preparing the blends. The two components and the compatibilizer were either blended in a single batch or used to prepare binary master blends to which the third component was added at a later stage. The results indicate that the PE‐g‐SBH copolymers do, in fact, compatibilize the PE–SBH blends and that the effect is more pronounced with the lower molar mass PE matrix and with the SBH sample having lower viscosity. The experiments carried out on blends prepared with different techniques show that the compatibilizing ability of the graft copolymer is improved if the latter is first blended with either of the two main components. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 603–613, 1999  相似文献   

2.
The mechanical properties, melt rheology, and morphology of binary blends comprised of two polypropylene (PP) grades and two liquid crystalline polymers (LCP) have been studied. Compatibilization with polypropylene grafted with maleic anhydride (PP-g-MAH) has been attempted. A moderate increase in the tensile moduli and no enhancements in tensile strength have been revealed. Those findings have been attributed to the morphology of the blends, which is predominantly of the disperse mode. LCP fibers responsible for mechanical reinforcement were only exceptionally evidenced. Discussion of PP-LCP interfacial characteristics with respect to mechanical properties-morphology interrelations allowed evaluation of the compatibilizing efficiency of PP-g-MAH. Factors important for successful reinforcement of PP with LCP have been specified. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 969–980, 1997  相似文献   

3.
The compatibilization mechanism of some compatibilizers for blends of polyolefins with a liquid crystalline polymer (LCP) was studied. Polyethylene (PE) and polypropylene (PP) were blended with a semirigid LCP (SBH) in a batch mixer, either with and without compatibilizers. The latter were two commercially available samples of functionalized polyolefins, that is, a PE‐g‐MA (HDM) and a PP‐g‐AA (Polybond 1001) copolymer and some purposely synthesized PE‐g‐LCP and PP‐g‐LCP copolymers. Microtomed films of the binary and the ternary blends were annealed at 240°C on the hot stage of a polarizing microscope and the changes undergone by their morphology were recorded as a function of time. The results indicate that the compatibilizers lower the interfacial tension, thereby providing an improvement of the minor phase dispersion. In addition to this, the rate of the coalescence caused by the high‐temperature treatment is appreciably reduced in the systems compatibilized with the PE–SBH and PP–SBH graft copolymers. Among the commercial compatibilizers, only Polybond 1001 displayed an effect comparable to that of the above copolymers. HDM improved the morphology of the as‐prepared PE blends, but failed to grant sufficient morphological stabilization against annealing‐induced coarsening. The results are discussed with reference to the chemical structure of the different compatibilizers. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 3027–3034, 2000  相似文献   

4.
A novel graft copolymer (PE-g-LCP) consisting of polyethylene (PE) backbones and liquid crystalline polymer (LCP) branches was synthesized via reactive blending of an acrylic acid-functionalized PE (Escor 5000 by Exxon) with a semiflexible LCP (SBH 1 : 1 : 2 by Eniricerche S.p.A.). The crude reactive blending product (COP) was shown by investigation of the fractions soluble in boiling toluene and xylene and of the residue to contain unreacted Escor and SBH, together with the graft copolymer forming the interphase. The compatibilizing activity of COP for PE/SBH blends, compared to that of pure Escor, was investigated using two PE grades. The COP addition into 80/20 PE/SBH blends caused a much stronger reduction of the SBH droplet dimensions and morphology stabilization than did that of pure Escor. The rheological behavior of the samples showed that COP leads to a slight increase of interfacial adhesion in the melt as well and that the effect is more pronounced when lower molar mass PE grade is used as the blend matrix. Melt-spinning tests demonstrated that deformation of the SBH droplets into highly oriented fibrils can be obtained for the blends of lower molar mass PE, compatibilized with small amounts of the novel PE-g-SBH copolymer. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 2069–2077, 1999  相似文献   

5.
A family of amphiphilic graft copolymers were prepared from a maleated polypropylene (PP-g-MA) and various crystalline poly(oxyethylene)-segmented amines of 1000 to 3000 molecular weight. Structurally, these copolymers consist of polypropylene (PP) backbone and several crystalline poly(oxyethylene) (POE) pendants in the structure. In the observation of their phase behaviors by using a differential scanning calorimeter (DSC), the interference between the POE segments and PP backbone was found. In a particular case (PP-g-MA/ED-2001), the heat of POE crystallization did not show off in the cooling curve of the DSC, but appeared during the consecutive heating process. Generally, heating and cooling patterns of the DSC analyses showed the shifts of melting and crystallizing temperatures, depending on the length and the termini of POE, from those of the starting materials— PP-g-MA and POE amines. The TGA and optical microscopy observation further supported the DSC analyses.  相似文献   

6.
Styrene–acrylonitrile–glycidyl methacrylate (SAG) copolymers with various contents of glycidyl methacrylate (GMA) were used to compatibilize the incompatible blends of styrene–acrylonitrile (SAN) and a liquid crystalline polymer (LCP). These SAG copolymers contain reactive glycidyl groups that are able to react with the carboxylic acid and/or hydroxyl end groups of the LCP to form the SAG‐g‐LCP copolymers during melt processing. The in situ–formed graft copolymers tend to reside along the interface to reduce the interfacial tension and to increase the interface adhesion. The morphologies of the SAN/LCP blends were examined by using scanning electron microscopy (SEM), where the compatibilized SAN/LCP blends were observed with greater numbers and finer fibrils than those of the corresponding uncompatibilized blends. The mechanical properties of the blends increased after compatibilization. The presence of a small amount (200 ppm) of ethyl triphenylphosphonium bromide (ETPB) catalyst further promotes the graft reaction and improves the compatibilization. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 3321–3332, 2001  相似文献   

7.
Summary Polypropylene-graft-polystyrene (PP-g-PS) was synthesized by the coupling reaction of brominated polypropylene produced by metallocene-catalyzed copolymerization of propylene with 11-bromo-1-undecene and polystyryl lithium salts made by living anionic polymerization, for the first time. These structures were confirmed by 1H NMR analysis. TEM micrographs of PP-g-PS copolymers indicated the nanometer level microphase-separation morphology between the polypropylene segment and the polystyrene segment. Obtained PP-g-PS copolymers could work as an effective compatibilizer for PP and PS.  相似文献   

8.
A novel macromolecular surface modifier, polypropylene-grafted-poly(ethylene glycol) copolymer (PP-g-PEG), was synthesized by coupling polypropylene containing maleic anhydride with monohydroxyl-terminated poly(ethylene glycol). The effects of the reaction condition on the graft reactions were studied. The copolymers were characterized by IR, 1H NMR, thermogravimetry (TG) and differential scanning calorimetry (DSC). The results indicated that the graft reactions were hindered by increasing the molecular weight of PP or PEG. The graft copolymer was found to have a higher initial thermal degradation temperature and lower crystallization capacity as compared with pure PP, and the side chain of PEG hindered the PP chain from forming a perfect β crystal. The thermal stability of PP-g-PEG decreased with the increasing content or molecular weight of PEG. The copolymers were blended with polypropylene to modify the surface hydrophilicity of the products. The results of attenuated total reflectance FTIR spectroscopy (ATR-FTIR) showed that PP-g-PEG could diffuse preferably onto the surface of the blends and be suitable as an effectual macromolecular surface modifier for PP. __________ Translated from Acta Polymerica Sinica, 2007, (2): 203–208 [译自:高分子学报]  相似文献   

9.
The morphology and thermal properties of isothermal crystallized binary blends of poly(propylene-co-ethylene) copolymer (PP-co-PE) and isotactic polypropylene (iPP) with low molecular weight polyethylene (PE) were studied with differential scanning calorimeter (DSC), dynamic mechanical analysis (DMA), polarized optical microscopy (POM) and wide-angle X-ray diffraction (WAXD). In PP-co-PE/PE binary blends, however, the connected PE acted as a phase separating agent to promote phase separation for PP-co-PE/PE binary blends during crystallization. Therefore, the thermal properties of PP-co-PE/PE presented double melting peaks of PE and a single melting temperature of PP during melting trace; on the other hand, at cooling trace, the connected PE promoted crystallization rate because of enhanced segmental mobility of PP-co-PE during crystallization. At isothermal crystallization temperature between the melting points of iPP and PE, the binary blend was a crystalline/amorphous system resulting in persistent remarkable molten PE separated domains in the broken iPP spherulite. And then, when temperature was quenched to room temperature, the melted PE separated domains were crystallized that presented a crystalline/crystalline system and formed the intra-spherulite segregation morphology: these PE separated domains/droplet crystals contained mixed diluent PE with connected PE components. On the other hand, in the iPP/PE binary blends, the thermal properties showed only single melting peaks for both PE and iPP. Moreover, the glass transition temperature of iPP shifted to lower temperature with increasing PE content, implying that the diluent PE molecules were miscible with iPP to form two interfibrillar segregation morphologies: iPP-rich and PE-rich spherulites. In this work, therefore, we considered that the connected PE in PP-co-PE functioned as an effective phase separating agent for PP and diluent PE may be due to the miscibility between connected PE and diluent PE larger than that between PP and dispersed PE.  相似文献   

10.
When silica (SiO2) fillers were introduced into the polypropylene (PP) and liquid‐crystalline polymer (LCP) blend, it was found that the mixing sequence, the filler size, and the filler surface nature affected the rheology of the composites and the morphology of the LCP phase in the ternary composite. In particular, the compatibility between the filler and the PP matrix was found to exert a strong influence on the droplet‐fibril transition. The incorporation of the hydrophobic silica to the LCP/PP blend facilitated the fibrillation of LCP because the hydrophobic filler demonstrated affinity towards the hydrophobic PP matrix. The preferential residence of the hydrophobic silica in the PP phase would minimise the LCP domain disruption leading to the formation of LCP fibrils with high aspect ratios. The use of fine filler and in situ blending, which promoted the filler–LCP interaction, could prevent coalescence, inhibit deformation and hinder fibril development as well. © 2003 Society of Chemical Industry  相似文献   

11.
Copolyesters of poly(ethylene terephthalate) (PET) with a liquid crystalline polymer (LCP), SBH 1:1:2, have been synthesized by the polycondensation, carried out in the melt at temperatures up to 300°C of sebacic acid (S), 4,4′-dihydroxybiphenyl (B), and 4-hydroxybenzoic acid (H) in the presence of PET. The PET-SBH copolyesters have been characterized by differential scanning calorimetry, scanning electron microscopy, X-ray diffraction, etc., and the relationships between properties and preparation conditions are discussed. The copolyesters show a biphasic nature, which is more evident for the products synthesized with a thermal profile comprising relatively lower temperatures (220–230°C) in the initial stages of the polycondensation. Another procedure, whereby the addition of PET to the monomer charge was made at a later stage of the reaction, has also been devised to prepare copolyesters with enhanced blockiness. The compatibilizing effect of the PET-SBH copolymers toward PET/SBH blends has been investigated. PET/SBH blends (75/25, w/w) have been prepared in a Brabender mixer at 270°C and 30 rpm, with and without the addition of appropriate amounts (2.5, 5, and 10%, w/w) of 50-50 PET-SBH copolyesters. Different blending techniques have been used according to whether the three components were fed into the mixer at the same time, or one of them was added at a later stage. The effect of the type and the amount of added copolyester has been studied through morphological, thermal, and mechanical characterizations. The results show that the addition of small amounts ∼5 wt% of copolyesters leads to improved dispersion and adhesion of the minor SBH phase. Moreover, while the tensile modulus of the blends is practically unaffected by the addition of the copolymer, a substantial increase of both tensile strength and elongation to break is found for a concentration of added copolyester of ∼5wt%. Slightly better results were apparently obtained by the use of a block copolyester.  相似文献   

12.
The spray-freeze drying (SFD) technique was applied to sonicated aqueous suspensions of spray-dried montmorillonite clay (MMT) to produce highly porous agglomerates (SFD-MMT). Both MMT (used as a reference) and SFD-MMT were subsequently incorporated in polypropylene (PP) via melt compounding to produce 2 wt % nanocomposites with and without maleic anhydride grafted polypropylene (PP-g-MA). Polypropylene nanocomposites containing SFD-MMT exhibited thinner silicate flake layers compared to large agglomerates in PP/MMT nanocomposites. SFD-MMT particles became even more finer in the presence of PP-g-MA (i.e., in PP/PP-g-MA /SFD-MMT) where it hindered PP crystallization instead of serving as nucleation sites for the PP crystallization during rapid cooling. SFD-MMT improved the thermal stability of PP/PP-g-MA by 30°C compared to only 5–8°C for MMT/nanocomposites. MMT acts as a heterogeneous nucleating agent in the nucleation-controlled PP nanocomposites, but the hindrance effect was observed for the PP/PP-g-MA with SFD-MMT. PP/PP-g-MA/SFD-MMT exhibited twice the edge surface energy as compared to PP/PP-g-MA/MMT. The incorporation of both types of MMT raised the tensile moduli of PP and PP/PP-g-MA, with no improvement in their tensile strength and a decrease in the elongation at break. The PP/PP-g-MA/SFD-MMT showed brittle failure. POLYM. ENG. SCI., 60:168–179, 2020. © 2019 Society of Plastics Engineers  相似文献   

13.
The possibility of reinforcing polyethylene (PE) by blending it with a liquid crystalline polymer (LCP) rests on the successful improvement of phase compatibility and interfacial adhesion of these two structurally unlike polymers. The approach that is being considered in our laboratories consists of the synthesis of PE–LCP block or graft copolymers and of their use as compatibilizing agents for PE/LCP blends. In this work, the melt polycon-densation of sebacic acid (S), 4,4′-dihydroxybiphenyl (B), and 4-hydroxybenzoic acid (H) has been carried out at temperatures up to 280°C in the presence of an oxidized low molar mass PE sample containing free carboxylic groups (PEox), with the main scope of demonstrating that a PE-g-LCP copolymer may be synthesized by this route. The polycon-densation product has been fractionated by successive extractions with boiling toluene and xylene. The soluble fractions and the residues have been characterized by IR and NMR spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis (TG, DTG), and scanning electron microscopy (SEM). The extractions and the analyses have been repeated on a PEox/LCP blend prepared by melt mixing PEox and preformed LCP (SBH 112, by Eniricerche). The results show that, whereas for the blend a fairly clean separation of PEox and SBH can be obtained by solvent extraction, this is not so for the polycondensation product. All analytical procedures concordantly show that a PEox-g-SBH copolymer has, in fact, been obtained. In effect, both PEox and SBH chain segments are present, with different relative ratios, in all fractions of the polycondensate. Moreover, a fairly quantitative esterification of the PEox carboxyl groups has been shown by IR analysis to take place in the adopted conditions. Preliminary morphological investigations carried out by SEM have shown that the addition of the synthesized graft copolymer into HDPE/SBH blends leads to an improvement of the interfacial adhesion. © 1996 John Wiley & Sons, Inc.  相似文献   

14.
The in situ microfiber-reinforced polyethylene terephthalate/isotactic polypropylene (15/85, w/w) composite (PET/iPP MRC) was successfully obtained through the micro-nano-laminating co-extrusion by using polypropylene-grafted-glycidyl methacrylate (PP-g-GMA) as a compatibilizer. The effect of the compatibilizer on the rheological behavior, micromorphology of PET/iPP MRC, foaming capability and the mechanical properties of foamed PET/iPP MRC was investigated. Extensional rheology measurement revealed the strain hardening of PET/iPP MRC is more obviously than iPP and with compatibilizer added. Scanning electron microscope observation indicated that the introduction of PP-g-GMA compatibilizer can improve the compatibility between PET and PP and subsequently lead to the decrease of diameter of PET microfibers. In addition, the incorporating of PP-g-GMA compatibilizer can also decrease the diameter and enhance the cell density of PET/iPP MRC cell. Both the tensile strength and the impact strength of the PET/iPP MRC foam are higher than that of the iPP foam, and improved with the compatibilizer added.  相似文献   

15.
Blends of isotactic polypropylene (iPP) with the polyamide nylon-6 (N6), prepared by extrusion, were studied with a composition of up to 30% by weight polyamide. In the case of a 70/30 iPP/N6 blend, the influence of a compatibilizing agent based on polypropylene functionalized with maleic anhydride (PP-g-MA), with compositions of 1, 3, 5, and 10% by weight in polypropylene, was followed. The influence of the concentration of N6 and the compatibilizing agent on the rheological and thermal properties, and the morphology of the blends, was analyzed by monitoring the melt viscosity at different shear rates, differential scanning calorimetry, and polarized light microscopy. Vibrational spectroscopy was used to characterize the blends and to study the effect of the compatibilizing agent. The viscosity—composition curves for the iPP/N6 blends, in the composition and shear rate ranges analyzed, show a negative deviation from the additive rule, while the opposite trend is observed for the blends compatibilized with PP-g-MA. Important variations in the spectroscopic behavior was observed between compatibilized and noncompatibilized blends, which varied as a function of the compatibilizing agent concentration. The crystallization rates of iPP in the iPP/N6 blends, under both dynamic and isothermal conditions, are much greater than are those observed for pure iPP and are directly related to the nucleating activity of the polyamide. This effect is much smaller in the presence of the compatibilizing agent. The isothermal crystallization of the polyamide N6 in compatibilized blends is affected by the presence of iPP, reducing the crystallization rate due to the diluent effect of the polypropylene. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65: 2665–2677, 1997  相似文献   

16.
A novel concept of improving shear‐induced fibrillation of liquid crystalline polymer (LCP) in LCP/thermoplastic blend systems was introduced. Silica fillers (SiO2) were added to an LCP/polypropylene (PP) system to serve as a viscosity thickening agent and to improve the fibrillation of the LCP phase. The formation of LCP fibrils was found to enhance with the incorporation of 5–15 wt % of fillers. The presence of LCP fibrils improved the flow properties of the LCP/PP/SiO2 composites. It was evident from the rheological and morphological studies that the addition of silica led to an increase of the aspect ratio of the LCP fibrils, which, in turn, should improve their effectiveness as reinforcements and/or toughening agents. Substantial improvement in LCP aspect ratio was achieved by the introduction of hydrophobic SiO2 fillers in the PP/LCP blends. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2070–2078, 2002  相似文献   

17.
Mechanical properties and morphology of blends prepared from polypropylene (PP) and 5–20 wt% of regenerated tire-rubber (RgR) were studied. The samples were prepared in a twin-screw extruder. The addition of maleic anhydride-functionalized polypropylene (PP-g-MAH) was also investigated. Tensile and flexural moduli, tensile strength at break, elongation at break and Izod impact resistance at 23°C were increased by the addition of 15 wt% of regenerated rubber and 5 wt% of PP-g-MAH. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) analyses showed some interaction between PP and RgR and considerable modification of the compatibilized mixture morphology. The fracture surface of the blend with PP-g-MAH showed a better interaction between the PP matrix and the regenerated rubber domains, for all blends. Well-dispersed particles of the rubber in the polypropylene matrix were observed. DSC showed that PP crystallizes on cooling at lower temperatures as the RgR content increases. The decrease in crystallization temperature is more evident for blends with 5 wt% PP-g-MAH.  相似文献   

18.
PP/LCP原位复合材料微观结构与结晶性能的研究   总被引:3,自引:0,他引:3  
分别用SEM、TEM和XRD对不同温度、不同压延率的PP/LCP复合材料的微观结构和结晶状况等进行研究。结果发现,PP/LCP复合材料经过高温、室温压延后仍存在皮芯结构;温度和压延率的提高促进了LCP微纤的形成和长大,增强了PP相和LCP相的结合力;PP相和LCP相都有结晶生成,压延率的提高降低了材料的结晶度,温度的提高减小了结晶度降低的幅度。  相似文献   

19.
This article relates the fibrillation of liquid crystalline polymer (LCP) under shear in its blend with a thermoplastic polymer (TP) to the relative rate of energy utilization in the LCP and TP phases. The development of a criterion based on the energy relationship for predicting LCP fibrillation in the blend is discussed. The formation of LCP fibers in the blends of LCP with polycarbonate (PC), polyethylene naphthalate (PEN), high‐density polyethylene (HDPE), polypropylene (PP), and silica‐filled polypropylene (PP) was studied to validate the criterion and to demonstrate its applicability. For all the blends, viscosity data were obtained by using a capillary rheometer, which was subsequently used to estimate the rate of energy utilization in the LCP and the matrix phases. The predictions based on the proposed criterion were verified through the morphological investigations carried out on the extrudates obtained from the same capillary experiments. The energy‐based criterion was easy to implement, could account for the effect of variable LCP concentration and fillers in the blend, and could provide reliable predictions for a variety of LCP/TP blends. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3314–3324, 2003  相似文献   

20.
This article concerns the functionalization of polypropylene (PP) with oxazoline functionality by melt free radical grafting along with a low degree of degradation of PP in a batch mixer. A low volatile oxazoline, ricinoloxazoline maleinate (OXA), was used as the monomer. The grafting yield of OXA ranged from about 0.5 phr up to 1.5 phr (grams per 100 grams of PP) when its initial concentration and that of the peroxide ranged from 1.5 to 6.0 phr and 0.1 to 0.7 phr, respectively. The corresponding conversion of OXA to grafted OXA ranged from about 15 to 50%. Addition of styrene (St) as the comonomer did not enhance the grafting yield of OXA but markedly reduced the PP degradation. Also, little homo-and/or copolymers of OXA and/or St were found in the grafting system. This agrees with our finding that OXA and St did not copolymerize easily. The potential of using an OXA modified PP (PP-g-OXA) as the compatibilizer precursor in PP/PBT blends was examined as well. The presence of PP-g-OXA reduced the particle size of the dispersed phase (PBT) along with improved cohesion between the PP and PBT phases. This is consistent with a model kinetic study, which showed that the reaction between oxazoline and carboxylic functionalities was very fast. © 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号