首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polymer-carbon nanocomposites incorporate the exceptional properties of both the polymer matrices, such as low cost and simple processing, with the distinctive features of the carbon-based fillers, such as high electrical and thermal conductivities, and excellent mechanical properties. Various fillers like carbon black (CB), graphite, expanded graphite (EG), and carbon nanotubes (CNTs) are being used to produce materials with advanced properties. However, at high filler loading, these filler materials have some major challenges such as filler agglomeration. Recently, graphene has gained increased interest as an alternative filler to produce polymer nanocomposites with advanced characteristics. Thermosetting polymer composites with graphene fillers are being considered for multiple applications and are a subject of interest for researchers because of enhanced properties like excellent corrosion resistance and low density. This review outlines studies to improve the mechanical, electrical, and thermal properties of thermoset/graphene composites.  相似文献   

2.
Different mixtures of thermoplastic polyurethane (PU) with different amounts of nanometric carbon black (CB) were prepared by mechanical stirring in organic solvent, and their thermal, rheological, viscoelastic and mechanical properties were investigated. The rheology of the PU–CB mixtures in methyl ethyl ketone was optimized, allowing good dispersion of the CB in the polyurethane matrix once the solvent was removed; an increase in the number and size of carbon black aggregates in the polyurethane matrix was obtained by increasing the carbon black loading. Addition of carbon black improved the rheological and viscoelastic properties of the polyurethane, and the larger was the carbon black content, the higher was the storage modulus and the lower was the tanδ value. Moreover, the addition of higher amounts of CB changed the viscoelastic behaviour of the polyurethane, which became mainly elastic over all temperature range. On the other hand, the addition of CB loadings up to 12 wt% increased the thermal stability of the polyurethanes and increased the elongation-at-break without noticeable reduction in the tensile strength.  相似文献   

3.
In the following study, ground plum stones and silanized ground plum stones were used as natural fillers for novel polyurethane (PUR) composite foams. The impact of 1, 2, and 5 wt.% of fillers on the cellular structure, foaming parameters, and mechanical, thermomechanical, and thermal properties of produced foams were assessed. The results showed that the silanization process leads to acquiring fillers with a smoother surface compared to unmodified filler. The results also showed that the morphology of the obtained materials is affected by the type and content of filler. Moreover, the modified PUR foams showed improved properties. For example, compared with the reference foam (PUR_REF), the foam with the addition of 1 wt.% of unmodified plum filler showed better mechanical properties, such as higher compressive strength (~8% improvement) and better flexural strength (~6% improvement). The addition of silanized plum filler improved the thermal stability and hydrophobic character of PUR foams. This work shows the relationship between the mechanical, thermal, and application properties of the obtained PUR composites depending on the modification of the filler used during synthesis.  相似文献   

4.
We studied the effects of fillers on the mechanical, dynamic mechanical, and aging properties of rubber–plastic binary and ternary blends derived from acrylic rubber, fluorocarbon rubber, and multifunctional acrylates. The addition of fillers, such as carbon black and silica, changed the nature of the stress–deformation behavior with a higher stress level for a given strain. The tensile and tear strengths increased with the addition of the fillers and with loading, but the elongation at break decreased, and the tension set remained unaffected. The aging properties of carbon‐black‐filled blends were better because of the thermal antioxidant nature of carbon black. The swelling resistance of the binary and the ternary blends in methyl ethyl ketone increased with the incorporation of fillers. From dynamic mechanical thermal analysis, we concluded that the filler altered the height and half‐width of the damping peak at the glass‐transition temperatures. There was little change in the loss tangent values at higher temperatures. A higher loading of the filler increased the storage modulus at all of the temperatures measured. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 278–286, 2003  相似文献   

5.
Liquid metals (LMs) with high fluidity and high thermal conductivity (TC) are receiving considerable attention in the research on thermal management polymer composites as alternatives to conventional rigid solid fillers or as co-fillers to overcome the trade-off between TC and composite processability at high filler loads. While most previous studies have investigated the effects of LM fillers in soft elastomeric matrices, their effects on the composite properties with rigid matrices, such as epoxy-based polymers, have not been discussed extensively. Herein, we investigated the effects of LM eutectic Ga-In (EGaIn) as a co-filler on the properties of rigid epoxy-based composites with a binary filler (Al2O3/EGaIn) system. The increase in the volume fraction of LM fillers significantly improves the processability of uncured precursor composites but markedly decreases the mechanical strength of the cured composites at their high loads—the latter effects have rarely been examined in previous studies. However, with adequate LM loads, the composites exhibited superior mechanical properties compared with the all-solid-filler system, withstanding a surprisingly high compressive load (~100 kN) under which the all-solid-filler system fractured. Furthermore, the epoxy/binary filler composites exhibited reasonably high TC values (~1 W/mK) comparable to that of commercial epoxy molding compounds, suggesting their potential applicability for electronic packaging.  相似文献   

6.
Polyurethane composites filled with carbon fibers (CF) and carbon nanotubes (CNT) were prepared by mixing and injection molding, and its mechanical as well as their thermal properties were investigated. Dynamic mechanical analysis (DMA), thermogravimetry analysis (TGA), and thermal conductivity tests were done, and the properties were evaluated as a function of the filler concentration. The storage modulus of the composites increased with fillers concentration, which also mean the increase of the stiffness, suggest a good adhesion between the polyurethane matrix and the fillers. Addition of more CF and CNT to the composites broadened and lowered the peak of tan δ specifies that the polyurethane composite became more elastic because there is a good adhesion between the fillers and the matrix. The addition of carbon fillers improves the thermal stability of the polyurethane. The inclusions of CNT show a better thermal stability when compared with CF. The addition of carbon fillers also increased the thermal conductivity of the polyurethane composites. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
Composites that incorporate a conductive filler into an ethylene–octene (EO) elastomer matrix were evaluated for DC electrical and mechanical properties. Comparing three types of fillers (carbon fiber, low structure carbon black, and high structure carbon black), it was found that the composite with high structure carbon black exhibited a combination of properties not generally achievable with this type of filler in an elastomeric matrix. A decrease in resistivity at low strains is unusual and has only been reported previously in a few instances. Reversibility in the resistivity upon cyclic deformation is a particularly unusual feature of EO with high structure carbon black. The mechanical and electrical performance of the high structure carbon black composites at high strains was also impressive. Mechanical reinforcement in accordance with the Guth model attested to good particle–matrix adhesion. The EO matrix also produced composites that retained the inherent high elongation of the unfilled elastomer even with the maximum amount of filler (30% by volume). The EO matrix with other conducting fillers did not exhibit the exceptional properties of EO with high structure carbon black. Composites with carbon fiber and low structure carbon black did not maintain good mechanical properties, generally exhibited an increase in resistivity with strain, and exhibited irreversible changes in both mechanical and electrical properties after extension to even low strains. An explanation of the unusual properties of EO with high structure carbon black required unique features of both filler and the matrix. The proposed model incorporates the multifunctional physical crosslinks of the EO matrix and dynamic filler–matrix bonds. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 894–905, 2000  相似文献   

8.
This is the third report on the relationship between the properties and the structure of polyurethane elastomers derived from hydroxyl-terminated liquid polybutadiene (HT-BD). The curative effect of low molecular weight diols was investigated. Previously it was found that the use of aromatic diols presented a processing problem because of its high melting point. To solve this problem, the use of aralkyl diols and alicyclic diols was examined in this paper. The processability was significantly improved by the use of these diols, and the elastomers obtained retained considerably high mechanical properties.  相似文献   

9.
不同无机填料在聚氨酯弹性体中的性能对比   总被引:1,自引:0,他引:1  
以聚醚N-204、甲苯二异氰酸酯为原料,用1,4-丁二醇为扩链剂,填充经超声波分散、偶联处理的不同无机填料,分别合成填充型聚氨酯(PUR)弹性体。研究了填充型PUR弹性体的耐磨性、力学性能以及填料在弹性体中的分布状况。结果表明,不同无机填料在PUR弹性体中所表现出的性质不同,碳化硅主要提高了弹性体的耐磨性,而陶瓷微珠、玻璃微珠在增强增韧方面发挥了作用。  相似文献   

10.
Carbon black, graphite and carbon fibre were employed to design and prepare electrically conductive asphalt mixtures containing single filler or mixed fillers of conductive powder plus carbon fibre. The effects of filler type, filler content and mixed fillers on the resistivity of asphalt concrete were investigated. Experimental results showed that the insulating-conductive percolation transition of the resistivity under the function of filler content appears in the single-filler composites and the percolation threshold is approximately 12%, 10%, and 5% by volume percentage of the binder phase for carbon black, graphite and carbon fibre respectively. The combination function of mixed fillers has appreciable advantages over single powder filler, but no obvious advantages over simple fiber in the conductivity improvement at the same total filler content. But the addition of small amounts of expensive fibers to larger amounts of cheaper CB or graphite can be a cost effective system. Scanning electron microscope images provide insight into the mechanisms of conductivity enhancement for mixed fillers. Conductive filler particles exhibit the short-range contacts or connections in asphalt concrete, whereas carbon fibres exhibit a long-range conductive bridging effect and short-circuit effect because of the high aspect ratio.  相似文献   

11.
Most unfilled elastomers exhibit a high electrical resistance. Fillers are usually added to elastomers to enhance their mechanical properties. Frequently the filler type used is an electrically conductive carbon black and the inclusion of such fillers reduces the resistivity of the elastomer compound. Previous work has shown that for elastomers containing high abrasion furnace, carbon black fillers such as N330 (or N300 series) at a volume fraction above the percolation threshold the resistivity changes with strain, the precise resistivity versus strain behavior being nonlinear and irreversible for conventional carbon black fillers. A strain‐measuring device, deriving strain directly from a measure of the resistivity, requires that the behavior be reversible and reproducible from cycle to cycle. This work presents the electrical resistivity behavior of a natural rubber (NR) compound filled with Printex XE2 carbon black. This type of filler has a significantly different morphology to the N300 series blacks examined previously. The Printex was incorporated into the rubber at a volume fraction above its percolation threshold and its behavior is contrasted to that observed with N300 series carbon black‐filled NR. Here, and for the first time, reversible electrical resistivity dependence with strain is reported for an elastomer filled with Printex XE2. This reversible behavior under strain opens up the possibility of applications, such as a flexible load sensor, pressure sensor, or switch. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
The effects of different types of fillers and filler loadings on the properties of carboxylated nitrile rubber (XNBR) latex were identified. Silica, mica, carbon black (CB; N330), and calcium carbonate (CaCO3) were used as fillers with filler loadings of 10, 15, and 20 parts per hundred rubber. Furnace ashing and Fourier transform infrared analysis proved that interaction existed between the fillers and XNBR latex films. The morphology of the filled XNBR films was significantly different for different types of fillers. Mica and CaCO3 fillers showed uneven distribution within the XNBR film, whereas other fillers, such as silica and CB, showed homogeneous distribution within the films. In the observation, silica and mica fillers also illustrated some degree of agglomeration. The mechanical properties (e.g., tensile and tear strengths) showed different trends with different types of fillers used. For silica and mica fillers, the mechanical properties increased with filler loadings up to a certain loading, and decreased with higher filler loadings. For CB filler, the mechanical properties increased gradually with increasing filler loadings. CaCO3 fillers did not increase the mechanical properties. The crosslinking density of the XNBR films increased when they were incorporated with fillers because of the presence of elastomer–filler and filler–filler interactions. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

13.
The effect of carbon black fillers viz. semireinforcing furnace (SRF), high abrasion furnace (HAF) and intermediate super abrasion furnace (ISAF) carbon blacks on the cure, swelling and mechanical properties of 70/30 EPDM/NBR blend have been investigated. The maximum torque values have been found to be increased with increase in filler loading. Filledsystems have been found to exhibit a reduced solvent uptake tendency compared to the unfilled sample. Blends loaded with ISAF exhibited the lowest toluene uptake among the carbon black filled systems due to the better filler reinforcement. A more uniform morphology has been observed for ISAF‐filled samples compared to the other filler loaded systems. The improvement in the mechanical properties has been observed to be the highest for ISAF‐filled samples followed by HAF and SRF filled systems. This has been attributed to the smaller particle size of ISAF black. The experimental results of mechanical testing have been compared with various theoretical models. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
Dielectric elastomers are promising materials for actuators resembling human muscle. Among elastomers, acrylic rubbers (ACM) have shown good actuation performance but its use is limited by the high operating voltages required. The present work demonstrates that simultaneous incorporation of nanostructured carbon black and dielectric fillers offers an increase in a dielectric permittivity and a suitable modulus of the elastomers matrix, enabling an improved electro‐mechanical actuation performance at low voltages. By the use of reinforcing carbon black and barium titanate in an acrylic elastomer matrix a sixfold increase in the dielectric permittivity was realized. A fine tuning of the actuation stress and, consequently, actuation strain can be done by a judicial selection of the different filler concentrations in the soft rubber matrix. Finally, a synergistic effect of the fillers was observed in the improved actuation performance of the developed materials. This work may pave the way to design dielectric elastomers for actuator fabrication. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44116.  相似文献   

15.
Thermoplastic elastomers from blends of high‐density polyethylene and acrylonitrile butadiene rubber were prepared by a melt‐blending technique. The blends were dynamically vulcanized using sulfur, peroxide, and mixed curing systems. The peroxide concentration was varied to obtain samples of varying degrees of crosslinking. The peroxide system showed better mechanical properties. The crosslink density determination by the equilibrium swelling method revealed that the enhancement in properties can be correlated to the extent of crosslinking. It is observed that the effect of dynamic vulcanization on the property improvement is much more pronounced in rubber‐rich blends. To study the effect of filler incorporation on mechanical properties, fillers such as carbon black, silica, silane‐treated silica, and cork‐filled samples were prepared. All filled systems, except cork filled, exhibited superior mechanical properties. Scanning electron micrographs of selected fractured surfaces were analyzed to study the failure mechanism of the different compositions. Various theoretical models were applied to correlate the observed mechanical behavior with that of theoretically predicted values. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2912–2929, 2006  相似文献   

16.
无机填料对低硬度聚氨酯弹性体性能的影响   总被引:3,自引:0,他引:3  
研究了不同无机类填料对低硬度聚氨酯弹性体力学性能、耐溶剂性能以及耐热性能的影响。结果表明。分子筛和纳米粒子改性聚氨酯弹性体的力学性能、耐溶剂性能以及耐热性能要优于普通聚氨酯弹性体;用分子筛改性的聚氨酯弹性体力学性能和耐热性能与用纳米粒子改性的聚氨酯弹性体性能相比无大的差别,耐溶剂性能则更好些。从性能价格比方面考虑,用分子筛改性是较佳的选择。  相似文献   

17.
Among carbon fillers, carbon fiber is considered to be an ideal reinforcement for epoxy because of its outstanding electrical, mechanical, and thermal features. Several inorganic fillers such as zinc oxide, titania, and silica are also used in epoxy matrix for property enhancement. The review initially focuses the preparation methods and physical characteristics of epoxy/carbon fiber composite. Afterward, fabrication and properties of epoxy/zinc oxide/titania/silica composites are also conversed. Moreover, the effect of filler dispersion on polymer properties’ improvement is also highlighted. Epoxy/carbon fiber composites are employed more frequently and effectively in defense-related applications compared with epoxy/inorganic nanofiller composite.  相似文献   

18.
Metal alloys with low melting temperatures may be blended into polymers to improve their electrical conductivity. We review the preparation, morphology, and electrical conductivity of polymer composites based on low melting point metal alloys, with or without additional filler particles. Since such alloys can be liquid under melt processing conditions, the composite morphology is determined by phenomena such as coalescence of liquid metal drops, orientation of the liquid metal phase, or selective wetting of a second filler by the liquid metal. None of these phenomena appear in conductive composites based on more common conductive fillers such as carbon black, carbon nanotubes, or metal particles. The published literature suggests that composites based on low melting metal alloys, with or without additional non‐melting filler particles, can have much higher percolation thresholds and much higher electrical conductivity (~1,000 S/m) than those based on fillers such as carbon black or carbon nanotubes. Changes in other properties such as rheological or mechanical properties are also discussed. POLYM. ENG. SCI., 58:1010–1019, 2018. © 2017 Society of Plastics Engineers  相似文献   

19.
Incorporation of wood ash particles from wood gasification into microporous polyurethane elastomers has been investigated and compared to addition of commercially available microspheres resulting from coal burning. Samples were modified with 3 and 6 wt% of fillers. Structure, mechanical, and thermal properties of obtained elastomers were investigated. Incorporation of both types of ash particles decreased the density of polyurethanes simultaneously increasing their tensile strength and elongation at break. Addition of microspheres caused changes in segment structure of polyurethane, which had negative impact on thermal stability. Although the use of ash from wood pyrolysis enhanced thermal stability of elastomers, causing “labyrinth effect,”, which inhibited significantly thermal degradation of material. Results of research show that wood ash can be successfully used as a modifier of mechanical and thermal properties in polyurethane elastomers. POLYM. COMPOS., 37:881–889, 2016. © 2014 Society of Plastics Engineers  相似文献   

20.
The effect of aliphatic diols on the structure and some mechanical properties of polyurethane elastomers containing hydroxyl-terminated polybutadiene and three different diisocyanates was studied. Differential scanning calorimetric studies revealed the existence of several thermal transitions, characteristic of structures of multiphased elastomers. Three transition temperatures, a subzero transition and two high temperature transitions, were found in some of the elastomers. The higher-high temperature transition reflects ordered domains, also supported by X-ray diffraction, Higher degree of order was achieved with longer diols. The mechanical behavior is affected by the multiphase nature of the elastomers, especially by the morphology of the hard segment domains. The structureproperty relationships for the three component polyurethane elastomers in question thus have been established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号