High-performance thermoplastic polyurethane (TPU) elastomers have long been the objective of numerous studies. In this work, thermoplastic polyurethane–urea (TPUU) elastomers with balanced superior mechanical and thermal properties, in comparison with the rare cases of high-performance TPU/TPUU elastomers with super-high tensile strength, were synthesized by the reaction of polycarbonate diols with excess alicyclic isophorone diisocyanate, followed by the chain extension of alicyclic isophorone diamine. When the content of hard segment was around 47%, the TPUU elastomer had super-high tensile strength of 51.7 MPa, initial elastic modulus of 698 MPa and elongation at break of 480%. The temperature range of this TPUU elastomer's rubbery state was up to 120°C with storage modulus above 200 MPa, and its rubbery flow state reached 200°C where the storage modulus was still as high as 100 MPa. Fourier transform infrared spectroscopy analysis indicated the presence of strongly hydrogen bonded urethane and urea groups in these TPUU elastomers. Atomic force microscopy and differential scanning calorimetry studies demonstrated significant and nearly perfect microphase separation in these TPUU elastomers when the hard segment content was around or below 47%. These noncrystalline TPUU elastomers could be thermally processed or processed in the form of a solution. 相似文献
Understanding how dangling fragments of polyurethanes (PU) affect its microphase separation structure and damping properties can provide insights for designing desired materials at the molecular scale. By varying the types of diol extenders (such as 1,2-ethyleneglycol, 1,2-propanediol, and 1,2-butanediol), PU samples with different dangling residues were successfully synthesized. Using atomic force microscopy and small-angle x-ray scattering, we confirmed that the introduction of dangling chains disrupts microphase separation and demonstrated a correlation between the degree of suppressed microphase separation and the size of the dangling residues. Fourier transform infrared spectroscopy and molecular dynamics simulations confirmed that dangling chains reduce the hydrogen bonding index while increasing the phase compatibility between soft and hard segments. Differential scanning calorimetry (DSC) measurements revealed an increased glass transition temperature (Tg), indicating hindered movement of backbone segments due to dangling chains. Moreover, lengthening the dangling chains further decreased Tg. Dynamic mechanical analysis (DMA) demonstrated improved damping properties with the introduction of dangling chains, although increasing chain length led to deteriorating damping properties, consistent with observations from DSC. These findings suggest that the variations in macroscopic properties of PU induced by dangling chains are linked to hydrogen bonding interactions and micromorphology at the molecular level. 相似文献
Development of shape memory polymer materials with integrated self-healing ability, shape memory property, and outstanding mechanical properties is a challenge. Herein, isophorone diisocyanate, polytetramethylene ether glycol, dimethylglyoxime, and glycerol have been used to preparation polyurethane by reacting at 80°C for 6 h. Then, graphene oxide (GO) was added and the reaction keep at 80°C for 4 h to obtain polyurethane/GO composite with self-healing and shape memory properties. Scanning electron microscopy shows that the GO sheets were dispersed uniformly in the polyurethane matrix. The thermal stability was characterized by thermogravimetric analyses. The tensile test shows that the Young's modulus of the composites increases from 38.57 ± 4.35 MPa for pure polyurethane to 95.36 ± 10.35 MPa for the polyurethane composite with a GO content of 0.5 wt%, and the tensile strength increases from 6.28 ± 0.67 to 15.65 ± 1.54 MPa. The oxime carbamate bond and hydrogen bond endow the composite good self-healing property. The healing efficiency can reach 98.84%. In addition, the composite has excellent shape memory property, with a shape recovery ratio of 88.6% and a shape fixation ratio of 55.2%. This work provides a promising way to fabricate stimulus-responsive composite with versatile functions. 相似文献
Spiropyran (SP) derivatives with different hydroxyl groups have been synthesized and incorporated with polyurethane (PU) to prepare mechano-chromic composites. With the content of hydroxyl groups in SP increasing, the stress transfer along PU molecular chain to SP have been effectively enhanced, resulting in the refined mechano-chromic response. The correlation coefficient between mechano-chromic efficiency and effective stress has been defined, which increased by using bishydroxyspiropyran (SP2) instead of SP. With an optimized SP2 content of 1.5 wt%, the composites demonstrated the improved mechano-chromic effect and mechanical properties. The double hydroxyl groups in SP2 grasped the PU chain in form of chemical bonding, leading to construction of micro-phase structures in PU matrix. 相似文献
A ternary composite system consisting of natural rubber (NR), porous reduced graphene oxide (rPGO), and molybdenum disulfide (MoS2) was introduced for applying in the dielectric field, of which rPGO and MoS2 hybrid conductive filler (rPGM) was prepared by an effective and environmentally friendly method-microwave reduction. And the well-dispersed NR composites (NGM) were made by the latex co-precipitation method. Due to the large specific surface area of rPGM itself and the synergistic dispersion of rPGO and MoS2, it formed many stable interface structures with the NR matrix, which not only made the blend exhibit high elasticity and withstood large deformation as NR but also greatly improved the dielectric, mechanical and thermal stability of the NR matrix. Compared with neat NR, the dielectric constant of nanocomposite increased by 11 times in the presence of rPGM conductive filler, and the leakage current generated by direct contact of fillers was reduced due to the attachment of MoS2 to the surface of rPGO; when 2% rPGM was added, the NR exhibited the highest tensile strength (21.3 MPa), elongation at break (495%), and abrasion resistance (0.165 cm−3); in addition, the thermal stability of the nanocomposite was also improved. These phenomena indicate that rPGM had great potential in conductive fillers and provided a reliable way for NR applications in the field of dielectric elastomers. 相似文献
Summary: The mechanisms involved in rubber reinforcement are discussed. A better molecular understanding of these mechanisms can be obtained by combining characterization of the mechanical behavior with an analysis of the chain segmental orientation accompanying deformation. While the strain dependence of the stress is the most common quantity used to assess the effect of filler addition, experimental determination of segmental orientation can be used to quantify the interfacial interactions between the elastomeric matrix and the mineral inclusions.
SEM micrograph of natural rubber containing 10 wt.‐% of organomodified clay. 相似文献
Polyurethane elastomers (PUEs) are broadening applications attributed to their highly tunable mechanical properties, and the stress–strain curve is one of the most important characters. Theoretically, dozens of constitutive models have been developed to interpret the stress–strain curve for rubber-like materials but their applicability on PUEs is still suspicious, which results in the selection of models and the initialization of model parameters need expertise experience. We performed a statistical assessment of 25 constitutive models (10 physical and 15 phenomenological) based on a comprehensive dataset with 529 stress–strain curves for PUEs. The average coefficients of determination for the whole curve can be improved from 0.676 for the phantom model (1 parameter) to 0.990 for the Bechir model (6 parameters), and the percentage of well-fitted curves increases from 6% to 92%. Constitutive models with both the first- and the second-invariant, in logarithmic or exponential expression for strain perform better. 相似文献
Alternative binders for composite solid propellants (CSP) have always been a concern. One of the closest alternative to the broadly used military-grade hydroxyl-terminated polybutadiene (HTPB) would be its commercial-grade. Factorial design of experiments (DoE) was applied to optimize the mechanical properties of the binder. Commercial-grade HTPB was used, in addition to 1,4-butanediol (BDO) as chain extender, and either isophorone diisocyanate (IPDI) or 4,4’-methylenedicyclohexyl diisocyanate (H12MDI) as curing agents. The effect of simultaneously varying two factors: [NCO]/[OH] molar ratio, and BDO:HTPB mass fraction on the mechanical properties of the binder was evaluated. DoE gave the optimal conditions at 0.68 molar ratio, and 0.71 % BDO:HTPB mass fraction for IPDI; and at 0.66 and 0.57 %, respectively, for H12MDI. Higher strength was observed for binders formulated with H12MDI. At the optimal conditions, CSP formulated with commercial HTPB showed higher strength than CSP formulated with military HTPB. Moreover, with H12MDI higher elongation was observed (28±4 %) when compared to IPDI (19±1%). Thus, the former is a promising diisocyanate for tailoring CSP formulations with commercial-grade HTPB. 相似文献