首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N-methylol nylon 6 membranes were prepared by reacting nylon-6 with formaldehyde. Elemental analysis, used to analyze the composition of modified membranes, showed that the degree of substitution increased with formaldehyde content in the reaction solution. The modified nylon-6 membranes exhibited a high affinity to ethanol. Pervaporation results for the separation of ethanol-water mixtures showed that these membranes were water-selective, indicating that the diffusion property is the dominant factor. An N-methylol nylon-6 membrane with 33% degree of substitution showed the best membrane performance. In order to control the swelling of N-methylol nylon-6 membranes in the feed solutions of high ethanol content, thermal crosslinking was applied at 180°C for different times. It was found that heat treatment of 10 minutes gave the optimal permselectivity. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 64: 855–863, 1997  相似文献   

2.
Blend membranes of a natural polymer, chitosan, with a synthetic polymer, poly(vinyl alcohol) (PVA), were prepared by solution casting and crosslinked with a urea formaldehyde/sulfuric acid (UFS) mixture. Chitosan was used as the base component in the blend system, whereas PVA concentration was varied from 20 to 60 wt %. Blend compatibility was studied by differential scanning calorimetry, and Fourier transform infrared spectroscopy was used to study membrane crosslinking. Membranes were tested for pervaporation dehydration of isopropanol and tetrahydrofuran (THF) at 30°C in close proximity to their azeotropic compositions. Membrane performance was assessed by calculating flux and selectivity. Swelling experiments performed in water + organic mixtures at 30°C were used to explain the pervaporation results. The blend membrane containing 20 wt % PVA when tested for 5 and 10 wt % water–containing THF and isopropanol feeds exhibited selectivity of 4203 and 17,991, respectively. Flux increased with increasing concentration of water in the feed. Selectivity was highest for the 20 wt % PVA‐containing blend membrane. The results of this study are unique in the sense that the crosslinking agent used—the UFS mixture—was novel. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1918–1926, 2007  相似文献   

3.
Hybrid membranes were prepared using poly(vinyl alcohol) (PVA) and tetraethylorthosilicate (TEOS) via hydrolysis and cocondensation reaction for the pervaporation separation of water‐isopropanol mixtures. The resulting membranes were characterized by Fourier transform infrared spectroscopy, wide‐angle X‐ray diffraction, and differential scanning calorimetry. The glass transition temperature of these membranes varied from 100 to 120°C with increasing TEOS content. Effects of crosslinking density and feed compositions on the pervaporation performances of the membranes were studied. The membrane containing 1.5:1 mass ratio of TEOS to PVA gave the highest separation selectivity of 900 at 30°C for 10 mass % of water in the feed mixture. It was found that the separation selectivity and permeation flux data are strongly dependent on the water composition of the feed and operating temperature. However, the membrane with the highest crosslinking density showed unusual pervaporation properties. The overall activation energy values were calculated using the Arrhenius‐type equation. The activation energy values for the permeation and diffusion varied from 49.18 to 64.96 and 55.13 to 67.31 kJ/mol, respectively. Pervaporation data have also been explained on the basis of thermodynamic quantities. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1304–1315, 2004  相似文献   

4.
For the purposes of the water-selective membrane material development for pervaporation separation, we crosslinked poly(vinyl alcohol) (PVA) with sulfur-succinic acid (SSA), which contains —SO3OH, by heat treatment and investigated the effect of the crosslinking density on the separation of water–alcohol mixtures by pervaporation technique. The crosslinking reaction between PVA and SSA was characterized through Fourier transform infrared spectroscopy and differential scanning calorimetry tests by varying the amount of the crosslinking agent, the reaction temperature, and the swelling measurements of each pure component. The separation performance of the water–methanol mixture is not good due to the existence of sulfonic acid, hydrophilic group, in the crosslinking agent. However, for the water–ethanol mixture, the flux of 0.291 kg/m2h and the separation factor of 171 were obtained at 70°C when PVA-crosslinked membrane containing 7 wt % SSA was used. The same membrane also showed flux of 0.206 kg/m2h and a separation factor of 1969 at the same operating temperature. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 1717–1723, 1998  相似文献   

5.
Poly(vinyl alcohol) (PVA) blended with poly(ethylene glycol) (PEG) was crosslinked with tetraethoxysilane (TEOS) to prepare organic–inorganic PVA/PEG/TEOS hybrid membranes. The membranes were then used for the dehydration of ethanol by pervaporation (PV). The physicochemical structure of the hybrid membranes was studied with Fourier transform infrared spectra (FT‐IR), wide‐angle X‐ray diffraction WXRD, and scanning electron microscopy (SEM). PVA and PEG were crosslinked with TEOS, and the crosslinking density increased with increases in the TEOS content, annealing temperature, and time. The water permselectivity of the hybrid membranes increased with increasing annealing temperature or time; however, the permeation fluxes decreased at the same time. SEM pictures showed that phase separation took place in the hybrid membranes when the TEOS content was greater than 15 wt %. The water permselectivity increased with the addition of TEOS and reached the maximum at 10 wt % TEOS. The water permselectivity decreased, whereas the permeation flux increased, with an increase in the feed water content or feed temperature. The hybrid membrane that was annealed at 130°C for 12 h exhibited high permselectivity with a separation factor of 300 and a permeation flux of 0.046 kg m?2 h?1 in PV of 15 wt % water in ethanol. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

6.
Graft copolymers of poly(vinyl alcohol) (PVA) with polyacrylamide were prepared and membranes were fabricated at 48 and 93% grafting of acrylamide onto PVA. These membranes were used in the pervaporation separation of water/acetic acid mixtures at 25, 35, and 45°C. The permeation flux, separation selectivity, diffusion coefficient, and permeate concentration were determined. The highest separation selectivity of 23 for neat PVA at 25°C and the lowest value of 2.2 for 93% acrylamide‐grafted PVA membranes were observed. A permeation flux of 1.94 kg m?2 h?1 was found for the 93% grafted membrane at 90 mass % of water in the feed mixture. The diffusion coefficients in a water/acetic acid mixture had an effect on the membrane permselectivity. The Arrhenius equation was used to calculate the activation parameters for permeation as well as for the diffusion of water and of acetic acid. The activation energy values for the permeation flux varied from 97 to 28 kJ/mol. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 244–258, 2002  相似文献   

7.
Modified poly(vinyl alcohol) (PVA) membranes prepared by the ‘solution technique’ were tested for ethanol-water mixtures by varying the reaction density (Xcr = 0.05, 0.1) at various temperatures. The results are compared with those of PVA membranes (Xcr = 0.05) prepared by the technique of the GFT Company, Germany.  相似文献   

8.
王勇 《中国塑料》2019,33(11):34-38
将超支化聚酯(HBPE)与聚乙烯醇(PVA)共混交联制备了PVA/HBPE交联渗透汽化膜,研究了PVA/HBPE交联膜内的溶解扩散及渗透汽化性能。结果表明,随着温度的增加,水在交联膜内的渗透系数(Pwater)增加,且变化趋势与纯水通量一致,在55 ℃时达到最大值71.952 g/m2·h;随着HBPE含量的增加,渗透系数Pwater及纯水通量呈现增加的趋势,当HBPE含量为40 %时,纯水通量达到最大值185.726 g/m2·h。  相似文献   

9.
10.
Blend membranes of poly(vinyl alcohol) (PVA) and sodium alginate (NaAlg) were prepared by solution casting and crosslinked with glutaraldehyde (GA). Polymer blend compatibility was studied in water by measuring solution viscosity at 30°C. From the viscosity data, interaction parameters were determined to find the blend compatibility. Thickness of the membranes ranged between 35 and 40 μm. Circular disc‐shaped samples were cut from the thin membranes to perform gravimetric sorption experiments in water + 1,4‐dioxane and water + tetrahydrofuran mixtures at 30°C. Diffusion coefficients were calculated using Fick's equation. Concentration profiles of liquids were computed by solving Fick's equation under suitable boundary conditions. Diffusion coefficients show a dependence on the composition of the blends as well as composition of binary mixtures. A correlation was attempted between concentration profiles and diffusion coefficients of the transporting liquids. Degree of swelling and sorption coefficients were calculated from the gravimetric sorption data. Sorption kinetics was studied using an empirical equation to understand the nature of sorption–diffusion anomalies. Membrane selectivity for water + 1,4‐dioxane and water + tetrahydrofuran mixtures were calculated from the pervaporation experiments. A correlation between sorption and membrane selectivity was attempted. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 178–188, 2005  相似文献   

11.
Blended membranes of hydrophilic polymers poly(vinyl alcohol) (PVA) and poly(vinyl amine) (PVAm) were prepared and crosslinked with glutaraldehyde. The prepared membranes were characterized using infrared (attenuated total reflection mode) spectroscopy, differential scanning calorimetry, X‐ray diffractometry, and scanning electron microscopy measurements. Pervaporation performances of the membranes were evaluated for the separation of water‐isopropanol (IPA) mixtures. As the PVAm content increased from PVAm0 to PVAm1.5, the flux through a 70 μm film increased from 0.023 to 0.10 kg/mh at an IPA/water feed ratio of 85/15 at 30 °C. The driving force for permeation of water increased due to the temperature but it has no effect on IPA permeation. Activation energies for the permeation of IPA and water were calculated to be 17.11 and 12.46 kJ/mol, respectively. Controlling the thickness of the blend membrane could improve the permeation flux with only a marginal reduction in the separation factor. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45572.  相似文献   

12.
Grafted copolymeric membranes of poly(vinyl alcohol) with acrylamide (PVA‐g‐AAm) were developed and used in the pervaporation separation of water–dimethylformamide mixtures by varying the amount of water in the feed from 0 to 100%. From these data, the permeation flux, pervaporation separation index, diffusion coefficient, swelling index, and separation selectivity were calculated at 25, 35, and 45°C. The Arrhenius activation parameters for permeation flux ranged between 22 and 63 kJ/mol, while the activation energy for diffusion ranged between 23 and 67 kJ/mol. Separation selectivity was between 15 and 22. The highest permeation flux of 0.459 kg m?2 h?1 was obtained for the 93% grafted membrane at 90% of water in the feed mixture. The results are discussed using the principles of the solution–diffusion model. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 273–282, 2002  相似文献   

13.
The blend membranes of sodium alginate and poly(vinyl alcohol) have been prepared by physical mixing in different ratios (75, 50, and 25%) of sodium alginate with poly(vinyl alcohol). The membranes were crosslinked with glutaraldehyde and used in the pervaporation separation of water + isopropanol mixtures at 30°C. The crosslinking reaction was confirmed by Fourier transform infrared spectra. Permeation flux increased with an increase in mass % of water in the feed mixture as well as with an increase in the amount of poly(vinyl alcohol) in the blend, but separation selectivity decreased. Diffusion coefficients of water + isopropanol mixtures have been calculated using the Fick's equation from the sorption data. Arrhenius activation parameters were calculated for 10 mass % of water in the feed mixture using the values of flux and diffusion coefficients obtained at 30, 40, and 50°C. The diffusion and pervaporation results have been explained on the basis of solution‐diffusion principles. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3642–3651, 2002  相似文献   

14.
Non‐porous poly(vinyl alcohol) (PVA) membranes prepared by a cast‐evaporating technique were covered with an allyl alcohol or acrylic acid plasma‐polymerized layer. The wettability and the surface energy, as well as the chemical nature of the deposit, were assigned by X‐ray photoelectron spectroscopy (XPS) and Fourier‐transform infrared spectroscopy (FTIR). The ability of the modified membranes for dehydrating the water/ethanol azeotropic mixture by pervaporation was studied at 25, 40 and 60 °C. The best selectivity (α = 250 at 25 °C) was obtained in the case of the allyl alcohol plasma treatment. The results obtained are discussed on the basis of the hydrophilicity as well as in terms of the weakly crosslinked superficial layer that favoured the membrane swelling. Copyright © 2003 Society of Chemical Industry  相似文献   

15.
The novel organic–inorganic hybrid membranes were prepared from poly(vinyl alcohol) (PVA) and vinyltriethoxysilane (VTES). They were characterized using Fourier transform infrared (FTIR), X‐ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), thermogravimetric analysis (TGA), and contact angle metering. The as‐prepared membranes are formed at a molecular scale at a low VTES content. Aggregations in the surface of the as‐prepared membranes were clearly evident above 18.43 wt % VTES loading. The introduction of VTES into the PVA matrix resulted in a decrease in the crystalline and an increase in compactness and thermal stability of the as‐prepared membranes. Silica hybridization reduced the swelling of the as‐prepared membranes in water/ethanol/ethyl acetate mixtures, decreased the permeation flux, and remarkably enhanced water permselectivity in pervaporation dehydration of ethanol/ethyl acetate aqueous solution. The hybrid membrane with 24.04 wt % VTES has the highest separation factor of 1079 and permeation flux of 540 g m?2 h?1. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

16.
介绍了聚电解质及其渗透汽化膜材料的优异性能,综述了聚乙烯醇(PVA)聚电解质渗透汽化膜材料的研究进展,阐述了两性聚电解质(APE)材料的特性,其内盐结构改善了膜的耐水性和耐高温性.90℃时,各种PVA基APE材料用于纯度为95%的工业乙醇脱水,分离因子在1 100~1 300,渗透通量为2 500~1 600g/(m<...  相似文献   

17.
The ‘solution technique’ modification of poly(vinyl alcohol) (PVA) using maleic acid was carried out with the help of triethanolamine/water catalysts. The resulting PVA membranes were characterized by differential scanning calorimetry, infrared spectroscopy, and tensile studies to investigate the reaction between PVA polymer and maleic acid. It was found that the resulting PVA membranes had two portions, branched and crosslinked, and there were no more branched than cross-linked portions. For the pervaporation separation of the acetic acid-water system, two reaction densities (Xcr = mole maleic acid per mole monomeric unit of PVA) of 0.05 and 0.1 were studied for the separation of the entire range of mixture compositions at 25° C. The separation factors of the Xcr = 0.05 modified PVA membranes were higher than those of the Xcr 0.1 modified ones and the highest separation factor of 7.80 was obtained at 70wt% water in the feed with the Xcr = 0.05 modified PVA membrane.  相似文献   

18.
Pervaporation membranes were fabricated by blending different amount of zeolite NaA or NaX with three types of poly(amidesulfonamide) (PASA). The zeolite‐filled membranes were characterized by IR spectroscopy, SEM, sorption measurements, and wide‐angle X‐ray diffraction. By adding the proper amount of NaA into the polymer casting solutions, the resultant zeolite‐filled membranes exhibited improvement in both selectivity and permeability in the separation of 10% aqueous solutions of ethanol and propan‐1‐ol, as compared with the zeolite free membrane. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1323–1329, 2001  相似文献   

19.
Poly(vinyl alcohol) as well as its grafted copolymer membranes with polyacrylonitrile (PAN‐g‐PVA) were prepared and used to separate water and dimethyl formamide mixtures by the pervaporation technique. The three following membranes were prepared: (1) pure PVA; (2) 46% grafted PAN‐g‐PVA; and (3) 93% grafted PAN‐g‐PVA. Pervaporation separation experiments were carried out at 25°C for the feed mixture containing 10 to 90% water. By use of the transport data, permeation flux, separation selectivity, swelling index, and diffusion coefficients have been calculated. By increasing the grafting of the membrane, flux decreased, whereas separation selectivity increased slightly over that of pure PVA membrane. Arrhenius activation parameters for transport processes were calculated for 10 mass % water containing feed mixture by using flux and diffusion data obtained at 25, 35, and 45°C. Transport parameters were discussed in terms of sorption‐diffusion principles. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 4091–4097, 2004  相似文献   

20.
Nanocomposite (NC) membranes based on hydrophobically modified PVA and laponite were synthesized with varying laponite content in the feed. The incorporation of laponite in NC membranes was investigated by FTIR spectroscopy and thermogravimetric analysis. The swelling ratio of membranes was determined as a function of temperature and laponite content. Swelling studies of NC membranes exhibited the decrease in swelling with an increase in laponite content in the NC membranes. The swelling ratio of NC membrane with 20% laponite slightly increased with an increase in temperature. Dynamic mechanical analysis showed the systematic increase in storage modulus with laponite content, which indicates the enhancement of mechanical property upon laponite addition. There was also a decrease in the tan δ peak values of NC membranes with an increase in laponite content in NCs. The permeabilities through NC membranes as a function of solute size and laponite content were studied and the results showed molecular screening based on size. The permeability of solute reduced due to the presence of well‐dispersed laponite in the NC. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2896–2903, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号