首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Physical aging of poly(aryl ether ether ketone ketone) (PEEKK) was investigated. Heat flow responses were measured after annealing the amorphous samples that were obtained by quenching the melt into an ice-water bath at just below the glass transition temperature. Isothermal cold crystallization of the aged samples was carried out. The Avrami equation was used to determine the kinetic parameters, and the Avrami constant n is about 2. An Arrhenius form was used to evaluate the relaxation activation energy of physical aging and the transport activation energy of isothermal crystallization. The activation energy of physical aging was similar in magnitude to that observed for the temperature dependence of crystallization under conditions of transportation control. Results obtained were interpreted as purely kinetic effects associated with the glass formation process. © 1998 John Wiley & Sons, Inc. J. Appl. Polym. Sci. 70: 907–912, 1998  相似文献   

2.
3.
Several kinds of commercially available polymers of the type poly(oxy-1,4-phenylenecarbonyl-1,4-phenylene) were sulfonated by reaction with mixtures of sulfuric acid and oleum. The ether/carbonyl group ratio of the polymer chain varied from 0.67 to 2.0. With decreasing amounts of ether links in the polymer backbone the sulfonation is hindered and the reaction conditions have to be stronger. To yield the same degree of sulfonation, the sulfuric trioxide concentration of the reaction mixture has to be increased. The achievable degree of substitution is limited, in general, to one sulfonate group per substitutable unit (oxy-phenylene-oxy- or oxy-phenylene-carbonyl unit). In dependence on the polymer structure, polymers with contents of sulfonate groups between 1.2 and 2.0 meq·g–1 polymer are well soluble in dimethylformamide or N-methylpyrrolidone and it is possible to produce membranes with permselectivities >96% and electrical resistances < 2 Ω cm–2. The sulfonated polymers were characterized by viscosimetry, sedimentation analysis and 13C NMR spectroscopy.  相似文献   

4.
Xigui Yue 《Polymer》2007,48(16):4715-4722
A novel bisphenol monomer, (3-methoxy)phenylhydroquinone, was synthesized via a three-step synthetic procedure. The cyclization of the bisphenol monomer and 4,4-difluorobenzophenone was carried out under pseudo high dilution condition. Two types of fully aromatic poly(aryl ether ketone)s were prepared by copolymerization of macrocycle of aryl ether ketone (MACEK) containing hydroxyphenyl, 4,4′-(hexafluoroisopropylidene)diphenol (HFBPA), and 4,4-difluorobenzophenone. The copolymers have high molecular mass, good solubility and high glass transition temperatures. The copolymers are crosslinkable in the presence of basic initiator and the glass transition temperatures of the copolymers increased greatly after the curing. These cured copolymers exhibit excellent thermal stability, and the 5% weight loss temperatures are around 500 °C in nitrogen.  相似文献   

5.
A study has been made of the crystallization behavior of poly(aryl ether ether ketone), PEEK, under nonisothermal conditions. A differential scanning calorimeter (DSC) was used to monitor the energetics of the crystallization process from the melt. For nonisothermal studies, the melt was crystallized by cooling at rates from 1°C/min to 10°C/min. A kinetic analysis based on the recently proposed model for nonisothermal crystallization kinetics to remedy the drawback of the Ozawa equation was applied. The Avrami exponent for the nonisothermal crystallization process was strikingly different from that of the isothermal process, which indicates different crystallization behaviors. The results agree with the morphological observation reported in the literature. This study shows that correct interpretation of the Avrami exponent provides valuable information about the crystal structure and its morphology.  相似文献   

6.
Concurrent measurements of transmitted polarized light intensity and recording of the phenomenon of crystallization through polarized optical microscopy have resolved some of the controversies on the bulk crystallization behavior of poly(aryl ether ether ketone) (PEEK). The process of bulk crystallization was studied through the separation of the nucleation and growth steps. Avrami plots have shown three characteristic ranges. It was observed that a first slope at low crystallization times is associated with massive heterogeneous nucleation and/or local-order-promoted primary nucleation of spherulitic crystals. A second gradual decrement in intensity follows, showing a logarithmic tendency. It represents a mixture of at least three parallel mechanisms. These are associated with the end of the process of crystallization of the primary spherulites and in large proportion the nucleation and growth, at lower rates, of sporadically nucleated spherulites. In addition, there is some contribution from secondary crystallization to the transmitted light emerging. The whole group of nucleated spherulites continue growing up to the point of impingement, which loosely marks the beginning of the third region. This last region with lower slope than the first one and an exponential tendency reflects secondary crystallization at long times. The general characteristics of the processes of nucleation and growth are discussed.  相似文献   

7.
Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ketone ether ketone ketone) (PEKEKK) were investigated by differential scanning calorimetry (DSC). The Avrami equation modified by Jeziorny could only describe the primary stage of nonisothermal crystallization kinetics of PEKEKK. Also, the Ozawa equation could not describe its nonisothermal crystallization behavior. A convenient and reasonable kinetic approach was used to describe the nonisothermal crystallization behavior. The crystallization activation energy were estimated to be −264 and 370 KJ/mol for nonisothermal melt and cold crystallization by the Kissinger method. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2865–2871, 2000  相似文献   

8.
The kinetics of diffusion of water from different activity vapors and liquid phase have been investigated in glassy amorphous poly(aryl ether ether ketcne) (PEEK) films at the temperature of 60°C and in glassy semicrystalline PEEK sheets at different temperatures, respectively. In the case of the amorphous PEEK films (250 μm thick) the data at low activity levels were interpreted by means of a purely Fickian mechanism. At higher activity levels the material has shown the presence of a relaxation process; in this case the data have been interpreted using a model proposed by Berens and Hopfenberg. Equilibrium sorption isotherm is also reported. Liquid water sorption in semicrystalline (30%) PEEK sheets (2 mm thick) has been determined to follow the classical Fickian mechanism. The water uptake values obtained for both amorphous and semicrystalline PEEK, confirm the good moisture and liquid water resistance of this kind of high performance thermoplastic polymer.  相似文献   

9.
The effect of annealing on the properties of poly(ether ether ketone) has been studied by changing annealing temperature and time. Crystallinity increases with annealing temperature, but is little affected by annealing time. Annealing time results suggest an improved crystalline perfection as annealing time increases. Higher crystallinity levels cause an increase in stress-related properties and a decrease in strain-related properties. Crystalline perfection, however, seems to produce an increase in stress-related properties, but it does not affect strain-related properties. Consideration has also been given to the effect of other possible parameters different from crystalline structure, such as crosslinking, on the variation of properties.  相似文献   

10.
Different routes for preparing poly(aryl ether ketone)s (PEKKs) are presented and compared. The properties of PEKKs are related to the content of metaphenyl links in the molecular main chains, the molecular chain branching degree, the gelation content by molecular crosslinks, and, especially, the relative content of crystal form II to crystal form I of the PEKK polymorphism. When the molecular T/I ratio of 50/50 in the polymer chains is reached, the obtained PEKK has a lower melting point and gelation content (2% or so). The PEKKs prepared from the electronical substitution route (E route) often have a 0–30% content of crystal form II (relative to the mixed form I and form II), which is much more than that in PEKKs from the nucleophilic substitution route (N route, form II accounts for 0–20%). The relatively unstable crystal form II resulted in the unstable and difficultly predicted thermal properties of PEKKs. PEKKs from different routes provide samples with melting points from 360 to 397°C (Tm) and glassy transition temperatures (Tg) from 167 to 176°C and the equilibrium melting point of 411°C for para-PEKK, while the tensile strength of the homopolymer PEKK and copolymers of PEEKK (poly(aryl ether ether ketone ketone)–PEKK can reach 100 MPa prepared by the N route. The high Tg makes PEKK polymers practically useful while too high Tm and a very small difference between Tm and Td (degradation temperature) produce obstacles to its wide application. The reaction mechanisms of both electrophilic and nucleophilic routes are investigated and discussed in detail. Results show that the molecular chain branched by solvents and monomers with many activated points may be partly reduced to some extent by the oligomer and extruding route. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67: 659–677, 1998  相似文献   

11.
Analysis of the nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone) (PEEKK) was performed by using differential scanning calorimetry (DSC). The Avrami equation modified by Jeziorny could describe only the primary stage of nonisothermal crystallization of PEEKK. And, the Ozawa analysis, when applied to this polymer system, failed to describe its nonisothermal crystallization behavior. A new and convenient approach for the nonisothermal crystallization was proposed by combining the Avrami equation with the Ozawa equation. By evaluating the kinetic parameters in this approach, the crystallization behavior of PEEKK was analyzed. According to the Kissinger method, the activation energies were determined to be 189 and 328 kJ/mol for nonisothermal melt and cold crystallization, respectively.  相似文献   

12.
A new crystal modification induced by strain and denoted as form II exists alongside the dominant form I structure in the uniaxially oriented poly(ether ether ketone) (PEEK) and the related polymers. The crystal structure of form II for PEEK is also found to possess a two‐chain orthorhombic packing with unit cell parameters of a equal to 0.475 nm, b equal to 1.060 nm, and c equal to 1.086 nm. More extended and flattened chain conformation of form II relative to that of form I is expected to account for an 8% increase in c‐axis dimension, which is attributed to the extensional deformation fixed in situ through strain‐induced crystallization during uniaxial drawing. Annealing experiments suggest that form II is thermodynamically metastable and can be transformed into more stable form I by chain relaxation and reorganization at elevated temperature without external tension. This strain‐induced polymorphism exists universally in the poly(aryl ether ketone) family. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 237–243, 1999  相似文献   

13.
Surface modification of poly(aryl ether ether ketone) (PEEK) film surfaces by oxygen plasma treatment was investigated. Two procedures, the direct plasma treatment and the remote oxygen plasma treatment, were used as oxygen plasma treatments, and the efficiency of the hydrophilic modification was discussed. The direct and remote oxygen plasma treatments lead to degradation of the PEEK film as well as hydrophilic surface modification. The degradation disturbs the surface modification. The remote oxygen plasma treatment rather than the direct oxygen plasma is suitable for the hydrophilic surface modification of the PEEK film. The remote oxygen plasma treatment at 10 W for 60 s forms predominantly C—O groups rather than C=O groups as an oxygen-containing group on the PEEK surface and gives a highly hydrophilic surface with a contact angle of 44 degrees. © 1998 John Wiley & Sons, Inc. J Appl Polm Sci 68:271–279, 1998  相似文献   

14.
聚芳醚砜酮纤维的热性能   总被引:1,自引:0,他引:1  
采用DSC、TG测定了含联苯结构聚芳醚砜酮 (PPESK)纤维的热性能 ,结果表明 ,纤维的玻璃化温度随砜酮比的增大而提高 ,纤维的起始分解温度大于 463℃。当砜酮比为 15 / 85 ,5 0 / 5 0 ,75 / 2 5时 ,纤维的玻璃化温度分别为 2 5 7.62 ,2 78.64 ,2 79.71℃ ;热分解活化能分别为 15 0 .8,2 19.9,195 .5kJ/mol;热分解反应级数分别为 1,1.76,1级  相似文献   

15.
Liang Chen  Huaping Mao  Lei Yao  Yen Wei 《Polymer》2005,46(8):2825-2829
In this communication, we report for the first time the synthesis of a new electroactive poly(aryl ether ketone) derived from the phenyl-capped aniline tetramer. The general properties are studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The polymer has high serving temperature and good thermal stability. And its chemical oxidation process was studied by UV-Vis spectra. It was found the polymer was oxidized to its EB form and then to the pernigraniline oxidation state, which is same as the PANI.  相似文献   

16.
以4,4′-二苯氧基二苯砜(DPODPS)、对苯二甲酰氯(TPC)和间苯二甲酰氯(IPC)为单体,无水AlCl3/二氯乙烷(DCE)/N,N-甲基甲酰胺(DMF)为催化溶剂体系,通过低温溶液共缩聚反应,合成系列聚芳醚砜醚酮酮(PESEKKs),用IR、DSC、WAXD、TG等技术对聚合物进行了结构和性能的表征,研究结果表明,随着高分子主链中间位苯基结构单元的增加,对共聚玻璃化转变温度(Tg)和热分解温度(Td)影响不大,熔融温度(Tm)和结晶则逐渐降低,但仍保持良好的耐热性,溶解性等到很大改善。  相似文献   

17.
Crystallinity and mechanical properties of blends with different amounts of semicrystalline poly(aryl/ ether ether ketone) (PEEK) and amorphous poly(ether imide) (PEI) polymers have been studied. The blends, prepared by melt mixing, have been investigated by differential scanning calorimeter (DSC) to analyze the miscibility between the components and the final crystalline content. Moreover, for the 20/80 PEEK/PEI blend, crystallization in dynamic and isothermal conditions has been carefully investigated in order to find proper conditions for maximum development of crystallinity. Mechanical tests (static and dynamic) have been performed to evaluate the properties of the as-molded and crystallized blends and to compare them with those of crystalline PEEK and amorphous PEI neat resins. Finally, a few SEM observations have been performed to compare the fractured surface of the blend with those of the pure constituents.  相似文献   

18.
A new class of high performance engineering resins, poly(aryl ether ketone)s, has emerged with a property balance not offered by existing polymeric materials. Blends of poly(aryl ether ketone)s with other polymers have not been described in the open literature, although several patents have revealed interesting and important properties of certain blend combinations. Ultem polyetherimide has been found to be miscible over the entire composition range and as a consequence is a very effective heat distortion temperature builder, particularly if the poly(aryl ether ketone) is allowed to crystallize. Crystallization kinetics and mechanical properties were studied as a function of blend composition and poly(aryl ether ketone) melting point. The blends exhibited a maximum in toughness at intermediate compositions along with an accompanying maximum in poly(aryl ether ketone) crystallinity. The chemical resistance of the polyetherimide is significantly improved with the addition of a poly(aryl ether ketone). In organic chemicals, the improvement was expected when tensile stress was plotted vs. log time to rupture. However, in aqueous bases, the resistance of the blends was much greater than anticipated. This property profile suggests that these blends will be useful as thermoplastic composite matrix resins.  相似文献   

19.
The melting behavior of semicrystalline poly(ether ether ketone ketone) (PEEKK) has been studied by differential scanning calorimetry (DSC). When PEEKK is annealed from the amorphous state, it usually shows two melting peaks. The upper melting peaks arise first, and the lower melting peaks are developed later. The upper melting peaks shown in the DSC thermogram are the combination (addition) of three parts: initial crystal formed before scanning; reorganization; and melting-recrystallization of lower melting peaks in the DSC scanning period. In the study of isothermal crystallization kinetics, the Avrami equation was used to analyze the primary process of the isothermal crystallization; the Avrami constant, n, is about 2 for PEEKK from the melt and 1.5 for PEEKK from the glass state. According to the Lauritzen-Hoffman equation, the kinetic parameter of PEEKK from the melt is 851.5 K; the crystallization kinetic parameter of PEEKK is higher than that of PEEK, and suggests the crystallizability of PEEKK is less than that of PEEK. The study of crystallization on PEEKK under nonisothermal conditions is also reported for cooling rates from 2.5°C/min to 40°C/min, and the nonisothermal condition was studied by Mandelkern analysis. The results show the nonisothermal crystallization is different from the isothermal crystallization. © 1996 John Wiley & Sons, Inc.  相似文献   

20.
Poly(aryl ether ketone)s were used as modifiers for bisphenol-A diglycidyl ether epoxy resin (AER 331) cured with methyl hexahydrophthalic anhydride. Poly(phthaloyl diphenyl ether) (PPDE), soluble in the uncured epoxy resin without using solvents, was prepared by the Friedel-Crafts reaction of phthaloyl chloride and diphenyl ether. The mechanical, thermal, and dynamic viscoelastic properties of the modified resins with PPDE were examined and compared to the parent resin (AER 331). The fracture toughness, KIC, for the modified resins increased at no expense to their mechanical and thermal properties on 10 wt % addition of PPDE with molecular weights of more than 17,000. The toughening mechanism is discussed based on the morphological and dynamic viscoelastic behaviors of the modified epoxy resin system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号