首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study aimed at using scanning electron microscopy to study the Izod impact fracture surface morphology of super‐tough nylon 6 blends prepared by blending nylon 6 with a maleic anhydride‐grafted polyethylene‐octene elastomer (POE) in the presence of a multifunctional epoxy resin (CE‐96) as compatibilizer. The fracture surface morphology and the impact strength of the nylon 6 blends were well correlated. The fracture surface morphology could be divided into a slow‐crack‐growth region and a fast‐crack‐growth region. Under low magnification, the fractured surface morphologies of the low‐impact‐strength nylon 6 blends appeared to be featureless. The area of the slow‐crack‐growth region was small. There were numerous featherlike geometric figures in the fast crack growth region. The fractured surface morphologies of the high‐impact‐strength nylon 6 blends exhibited a much larger area in the slow‐crack‐growth region and parabola markings in the fast‐growth region. Under high magnification, some rubber particles of the low‐impact‐strength nylon 6 blends showed limited cavitation in the slow‐crack‐growth region and featherlike markings in the fast‐crack‐growth region. Rubber particles of high‐impact‐strength nylon 6 blends experienced intensive cavitation in the slow‐crack‐growth region and both cavitation and matrix shear yielding in the fast‐crack‐growth region, allowing the blends to dissipate a significant amount of impact energy. A nylon 6 blend containing 30 wt % POEgMA exhibited shear yielding and a great amount of plastic flow of the matrix throughout the entire slow‐crack‐growth region, thus showing the highest impact strength. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1285–1295, 2000  相似文献   

2.
The effect of a compatibilizer on the properties of corn starch‐reinforced metallocene polyethylene–octene elastomer (POE) blends was studied. The compatibility between POE and starch was improved markedly with an acrylic acid‐grafted POE (POE‐g‐AA) copolymer as a compatibilizer. Fourier transform infrared spectroscopy, X‐ray diffraction spectroscopy, differential scanning calorimetry, and scanning electron microscopy were used to examine the blends produced. The size of the starch phase increased with an increasing content of starch for noncompatibilized and compatibilized blends. The POE/starch blends compatibilized with the POE‐g‐AA copolymer lowered the size of the starch phase and had a fine dispersion and homogeneity of starch in the POE matrix. This better dispersion was due to the formation of branched and crosslinked macromolecules because the POE‐g‐AA copolymer had anhydride groups to react with the hydroxyls. This was reflected in the mechanical properties of the blends, especially the tensile strength at break. In a comparison with pure POE, the decrease in the tensile strength was slight for compatibilized blends containing up to 40 wt % starch. The POE‐g‐AA copolymer was an effective compatibilizer because only a small amount was required to improve the mechanical properties of POE/starch blends. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1792–1798, 2002  相似文献   

3.
Except by elastomers, the toughness of nylon‐6 (N‐6) can be improved by the addition of rigid poly(styrene‐co‐maleic anhydride) (SMA). In this case, strength and stiffness are also enhanced. Combination of SMA with maleated ethylene‐propylene rubber or styrene‐ethene/butene‐styrene with a total content below 15% gives a ternary blend having a toughness level close to elastomer toughening, whereas the strength and stiffness reached at least the Nylon‐6 values. An explanation is a synergistic combination of both elastomer and rigid polymer toughening mechanisms. An opposite effect on mechanical behavior was found with high contents of both additives. Except for worsened strength and stiffness, in some cases, a higher elastomer content even did not enhance the toughness. This effect can be explained by too fine phase structure found, causing the matrix ligament dimension to be below its minimum critical value. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1404–1411, 1999  相似文献   

4.
Polyamide and polypropylene (PP) are two important classes of commercial polymers; however, their direct mixing leads to incompatible blends with poor properties. Polypropylene functionalized with glycidyl methacrylate (PP‐GMA) was used as a compatibilizer in blends of PP and nylon 6, because of the possible reaction of ? NH2 and ? COOH groups with the epoxide group of GMA. Two types of nylon 6 with different ratios between ? NH2 and ? COOH groups were used. The one with higher concentration of ? COOH groups was less compatible with PP in a binary blend. When PP‐GMA was used as a compatibilizer, a better dispersion of nylon in the PP matrix was obtained together with better mechanical properties for both nylons used in this work. © 2001 Society of Chemical Industry  相似文献   

5.
The morphologies of nylon 6/acrylonitrile–butadiene–styrene blends compatibilized with a methyl methacrylate/maleic anhydride copolymer, with 3–20 wt % maleic anhydride, were examined by transmission electron microscopy. Some staining techniques were employed for identifying the various phases. The binary blends were immiscible and exhibited poor mechanical properties that stemmed from the unfavorable interactions among their molecular segments. This produced an unstable and coarse phase morphology and weak interfaces among the phases in the solid state. The presence of the copolymer in the blends clearly led to a more efficient dispersion of the acrylonitrile–butadiene–styrene phase and consequently optimized Izod impact properties. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3512–3518, 2003  相似文献   

6.
Five fungi including Aspergillus niger, Penicilium pinophilum, Chaetoomium globsum, Gliocladium virens and Aureobasium pullulans were used to investigate the biodegradation of starch‐based elastomers: polyethylene‐octene elastomer (POE)/starch and grafted POE‐g‐MAH/starch copolymer blends. The viability of the composite spore suspensions were measured before estimating the fungal growth on the surface of specimens. The weight loss, morphology and mechanical properties of the blended specimens were measured using scanning electron microscopy and a mechanical properties tester after 28 days of culturing. The spore suspension in the experiment showed good viability. Pure POE and POE‐g‐MAH did not allow significant fungal growth. Pure POE did not lose weight or have a change in tensile strength, but pure POE‐g‐MAH lost about 0.07% of its weight with a slight reduction in tensile strength during culture period. There was heavy growth on the surface of POE/starch and POE‐g‐MAH/starch blends after 28 days of culturing. The weight loss of POE/starch and POE‐g‐MAH/starch blends increased with increasing starch content. POE‐g‐MAH/starch blends tended to lose more weight than POE/starch blends. After biodegradation, the surface of POE/starch and POE‐g‐MAH/starch blends became rough with many holes and cracks, indicating that the films were eroded by the fungi. Tensile strength of POE/starch and POE‐g‐MAH/starch blends decreased after culturing because of microbial attack. On the contrary, elongation at break of POE‐g‐MAH/starch blends increased after biodegradation. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci 114:3574–3584, 2009  相似文献   

7.
In the present study, the properties of metallocene polyethylene–octene elastomer (POE) and wood flour (WF) blends were examined by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), an Instron mechanical tester, and scanning electron microscopy (SEM). The results showed that the mechanical properties of POE were obviously lowered, due to the poor compatibility between the two phases, when it was blended with WFs. A fine dispersion and homogeneity of WF in the polymer matrix could be obtained when acrylic acid‐grafted POE (POE‐g‐AA) was used to replace POE for manufacture of the blends. This better dispersion is due to the formation of branched and crosslinked macromolecules since the POE‐g‐AA copolymer had carboxyl groups to react with the hydroxyls. This is reflected in the mechanical and thermal properties of the blends. In comparison with a pure POE/WF blend, the increase in tensile strength at break was remarkable for the POE‐g‐AA/WF blend. The POE‐g‐AA/WF blends are more easily processed than are the POE/WF blends, since the former had a lower melt viscosity than that of the latter. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1919–1924, 2003  相似文献   

8.
A new strategy to compatibilize immiscible blends is proposed, using graphene oxide (GO) nanosheets taking advantage of their unique amphiphilic structures. When 0.5 or 1 wt% GOs were incorporated in immiscible nylon 6/poly(vinylidene fluoride) (PVDF) (90/10 wt%) blends, the dimension of PVDF dispersed particles was markedly reduced and became more uniform, revealing a well‐defined compatibilization effect of GOs on the immiscible blends. Correspondingly, the ductility of the compatibilized blends increased several times compared with uncompatibilized immiscible blends. In order to explore the underlying compatibilization mechanism, Fourier transform infrared and Raman spectra were applied to suggest that the edge polar groups of GOs can form hydrogen bonds with nylon 6 while the basal plane of GOs can interact with electron‐withdrawing fluorine on PVDF chains leading to the so‐called charge‐transfer C–F bonding. In this case, GOs exhibit favorable interactions with both nylon 6 and PVDF phase, therefore stabilizing the interface during GO migrations from PVDF/GO masterbatch to nylon 6 phase, which can minimize the interfacial tension and finally lead to compatibilization effects. Obviously, this work may open a broad prospect for GOs to be widely applied as a new compatibilizer in industrial fields. © 2012 Society of Chemical Industry  相似文献   

9.
The microstructure (crystallinity, long spacing) and the micromechanical properties (microhardness H) of two series of nylon 6 and nylon 66 monofilaments and their blends were investigated as a function of annealing temperature TA and uniaxial deformation in a wide composition range. In case of the homopolymers, the gradual rise of microhardness with TA is interpreted in the light of the increasing values of the crystallinity α and the hardness of the crystals Hc. The depression of the hardness values of the blends from the additive behavior of the hardness of individual components is discussed in the basis of the crystallinity depression of one component by the second one and viceversa. Finally, the influence of drawing and pressing the blends at 130°C which leads to a hardness increase is also explained in the light of an increase in the Hc value of nylon 66 due to orientation. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 636–643, 2000  相似文献   

10.
The elastomer toughening of PA66/PA6 nanocomposites prepared from the organic modified montmorillonite (OMMT) was examined as a means of balancing stiffness/strength versus toughness/ductility. Several different formulations varying in OMMT content were made by mixing of PA6 and OMMT as a master‐batch and then blending it with PA66 and different elastomers in a twin screw extruder. In this sequence, the OMMT layers were well exfoliated in the nylon alloy matrix. The introduction of silicate layers with PA6 induced the appearance of the γ crystal phase in the nanocomposites, which is unstable and seldom appears in PA66 at room temperature and it further affected the morphology and dispersion of rubber phase resulting in much smaller rubber particles. The incorporation of POE‐g‐MA particles toughened the nanocomposites markedly, but the tensile modulus and strength were both reduced. Conversely, the use of OMMT increased the modulus but decreased the fracture toughness. The nanocomposites exhibited balanced stiffness and toughness. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

11.
The ductile–brittle transition temperatures were determined for compatibilized nylon 6/acrylonitrile‐butadiene‐styrene (PA6/ABS) copolymer blends. The compatibilizers used for those blends were methyl methacrylate‐co‐maleic anhydride (MMA‐MAH) and MMA‐co‐glycidyl methacrylate (MMA‐GMA). The ductile–brittle transition temperatures were found to be lower for blends compatibilized through maleate modified acrylic polymers. At room temperature, the PA6/ABS binary blend was essentially brittle whereas the ternary blends with MMA‐MAH compatibilizer were supertough and showed a ductile–brittle transition temperature at ?10°C. The blends compatibilized with maleated copolymer exhibited impact strengths of up to 800 J/m. However, the blends compatibilized with MMA‐GMA showed poor toughness at room temperature and failed in a brittle manner at subambient temperatures. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2643–2647, 2003  相似文献   

12.
Vinyl trimethoxysilane (VTMS) was grafted onto metallocene‐based polyethylene–octene elastomer (POE) using a free‐radical reaction of VTMS and dicumyl peroxide as an initiator, and then the grafted POE was crosslinked in the presence of water. The effects of VTMS concentration on crystallization behavior, mechanical properties, and thermal properties of POE before and after crosslinking were studied in this article. Multiple melting behaviors were found for POE after silane crosslinking by using DSC measurement. Degree of crystallization of silane‐crosslinked POE decreases from 18.0 to 14.3%, with increase of VTMS from 0 to 2.0 phr. Tensile strength of silane‐crosslinked POE reaches a maximum of 28.4 MPa when concentration of VTMS is 1.5 phr, while elongation at break is 487%. TG shows that the temperature of 10% weight loss for pure POE is 405°C, while for crosslinked POE with addition of 2.0 phr VTMS the value comes to 452°C, indicating that crosslinking significantly help improve the thermal stability of POE. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5057–5061, 2006  相似文献   

13.
Polyblends of nylon 6 and liquid crystalline polymer (LCP) (Vectra A 950) are immiscible and highly incompatible, with resultant poor interfacial adhesion, large phase domains, and poor mechanical properties. In the present work, compatibilizing strategies are put forward for blends containing nylon and LCP. Effects of three types of compatibilizers, including ionomer Zn–sulfonated polystyrene (SPS), reactive copolymer styrene–maleic anhydride (SMA), functional grafted copolymers—polypropylene grafted glycidyl methacrylate (PP‐g‐GMA) and polypropylene grafted maleic anhydride (PP‐g‐MAH)—are studied in the aspects of morphology and dynamic mechanical behavior. The addition of compatibilizers decreases the domain size of the dispersed phase and results in improved interfacial adhesion between LCP and matrix. The compatibilization mechanism is discussed by way of diffuse reflectance Fourier transform spectroscopy (DRIFT), showing the reaction between compatibilizers and matrix nylon 6. Mechanical properties are improved by good interfacial adhesion. The contribution of SMA to mechanical properties is more obvious than that of Zn‐SPS and grafted PPs used. The blending procedure is correlated with the improvement of mechanical properties by the addition of compatibilizer. Two‐step blending is demonstrated as an optimum method to obtain composites with better mechanical properties as a result of a greater chance for LCP to contact the compatibilizer. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1452–1461, 2003  相似文献   

14.
The compatibilization of polypropylene (PP)/nylon 6 (PA6) blends with a new PP solid‐phase graft copolymer (gPP) was systematically studied. gPP improved the compatibility of PP/PA6 blends efficiently. Because of the reaction between the reactive groups of gPP and the NH2 end groups of PA6, a PP‐g‐PA6 copolymer was formed as a compatibilizer in the vicinity of the interfaces during the melting extrusion of gPP and PA6. The tensile strength and impact strength of the compatibilized PP/PA6 blends obviously increased in comparison with those of the PP/PA6 mechanical blends, and the amount of gPP and the content of the third monomer during the preparation of gPP affected the mechanical properties of the compatibilized blends. Scanning electron microscopy and transmission electron microscopy indicated that the particle sizes of the dispersed phases of the compatibilized PP/PA6 blends became smaller and that the interfaces became more indistinct in comparison with the mechanical blends. The microcrystal size of PA6 and the crystallinity of the two components of the PP/PA6 blends decreased after compatibilization with gPP. The compatibilized PP/PA6 blends possessed higher pseudoplasticity, melt viscosity, and flow activation energy. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 420–427, 2004  相似文献   

15.
Polymer alloys have been used as an alternative to obtain polymeric materials with unique physical properties. Generally, the polymer mixture is incompatible, which makes it necessary to use a compatibilizer to improve the interfacial adhesion. Nylon 6 (PA6) is an attractive polymer to use in engineering applications, but it has processing instability and relatively low notched impact strength. In this study, the acrylonitrile–butadiene–styrene (ABS) triblock copolymer was used as an impact modifier for PA6. Poly(methyl methacrylate‐co‐maleic anyhydride) (MMA‐MA) and poly(methyl methacrylate‐co‐glycidyl methacrylate) (MMA‐GMA) were used as compatibilizers for this blend. The morphology and impact strength of the blends were evaluated as a function of blend composition and the presence of compatibilizers. The blends compatibilized with maleated copolymer exhibited an impact strength up to 800 J/m and a morphology with ABS domains more efi8ciently dispersed. Moderate amounts of MA functionality in the compatibilizer (~5%) and small amounts of compatibilizer in the blend (~5%) appear sufficient to improve the impact properties and ABS dispersion. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 842–847, 2003  相似文献   

16.
Crystallization behavior and crystalline morphology of plain polypropylene (PP) and its blend with 0 to 30 wt % nylon 6 were studied by the hot‐stage polarized light microscopy method. Radial growth rate and the size and number of PP spherulites were measured as a function of both the isothermal crystallization temperature and the nylon 6 content of the blend. The study revealed that a reduction in the isothermal crystallization temperature from 135 to 120°C, for both the plain PP and its blend with nylon 6, leads to the formation of a large number of fast‐growing, small spherulites. Moreover, the size and growth rate of PP spherulites decreased on increasing the nylon 6 content of the blend; whereas the number of PP spherulites decreased sharply on initial addition of 10% nylon 6 and, thereafter, increased slightly by further addition of nylon 6. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 1769–1775, 2000  相似文献   

17.
It was found that the incorporation of a small amount of 2,2′‐diallylbisphenol A in a two‐component room‐temperature vulcanizing (RTV) silicone produced excellent adhesion on nylon substrates, whereas no adhesion was observed when this additive was excluded from the formulation. The effect of the chemical structure and the functionalities of this adhesion promoter were investigated by evaluation of several other molecules bearing both allylic and phenolic groups. No adhesion improvement was observed when 2‐allyl 4‐cumylphenol or 2‐allylphenol was used as the adhesion promoter, whereas with 2‐allylbisphenol A there was good adhesion between the two surfaces. Although it is quite clear that allyl groups react with the adhesive through the hydrosilylation reaction during the cure process of the RTV material, the interaction of the phenolic group with polymer surfaces seems to be largely dependent on the steric effect, that is, the ability of the OH group to be close enough to the plastic surface to develop a strong hydrogen bond. The minimum temperature required for adhesion to occur between nylon and RTV was determined to be in the range of 50°C–60°C. This temperature corresponds to the glass‐transition temperature of the amorphous part of the nylon. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3496–3499, 2003  相似文献   

18.
Dynamically vulcanized blends of nylon, styrene–acrylonitrile copolymer (SAN), and nitrile–butadiene rubber (NBR) were examined for mechanical properties, Shore D hardness, Vicat softening temperature, impact process, and phase morphology. The effect of a curing system such as phenolic formaldehyde resins (PF), dicumylperoxide (DCP), and a sulfur system on the mechanical properties of the nylon/SAN/NBR blends was studied, and dynamic vulcanization with a PF system was found to lead to outstanding toughness of the blends. The effect of PF content on the mechanical properties, Shore D hardness, and heat resistance of the nylon/SAN/NBR blends was also investigated. With increasing PF content the notched‐impact strength and Vicat softening temperature (VST) of the nylon/SAN/NBR (50/25/25) blends evidently improved, but tensile strength and Shore D hardness of the blends changed slightly. It can be concluded that the nylon/SAN/NBR (50/25/25) blends dynamically vulcanized by high‐content PF can attain excellent comprehensive mechanical properties, especially supertoughness, at room temperature. SEM was used to investigate the effect of dynamic vulcanization on disperse‐phase particle size, particle size distribution, and phase morphology. It was obvious that disperse‐phase particle size decreased with an increasing PF content. Thermal behavior and miscibility of dynamically vulcanized nylon/SAN/NBR with PF were investigated by DMTA. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 87: 2057–2062, 2003  相似文献   

19.
Vapor transport offers one the unique ability to study structure–property relationships in polymers. An analysis of the transport of chlorinated hydrocarbons through nylon/ethylene–propylene rubber (EPR) blend membranes showed us how the permeation behavior varied according to the structure and morphology of the material under study. Binary blends were subjected to solvent transport studies. The solvent uptake increased with EPR content and decreased with nylon content. The behavior varied with the blend morphology. The effects of blend ratio, compatibilization, and dynamic vulcanization on the vapor permeation behavior of nylon/EPR blends were investigated in detail. The results from the vapor permeation studies were complimentary to those of the morphology studies. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3756–3764, 2004  相似文献   

20.
To produce polyethylene–octene elastomer foams with compression molding, the influences of various activators on the thermal decomposition temperature of the chemical blowing agent azodicarbonamide were investigated with thermogravimetric analysis, which showed that the decomposition temperature of azodicarbonamide could be effectively reduced by the addition of zinc oxide/zinc stearate. The results of a moving die rheometer suggested that the vulcanization and blowing curves were influenced by the content of azodicarbonamide and temperature, and the optimum temperature was about 170°C. The morphology and physical properties of the microcellular polyethylene–octene elastomer were studied. The results indicated that the amount of azodicarbonamide and the processing temperature played important roles in the cell morphology and physical properties of polyethylene–octene elastomer foams. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号