首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The physical properties of poly(vinyl chloride) (PVC) and poly(N‐isopropylacrylamide) [poly(NIPAAm)] blend systems, and their corresponding graft copolymers such as PVC‐g‐NIPAAm, were investigated in this work. The compatible range for PVC–poly(NIPAAm) blend systems is less than 15 wt % poly(NIPAAm). The water absorbencies for the grafted films increase with increase in graft percentage. The water absorbencies for the blend systems increase with increase in poly(NIPAAm) content within the compatible range for the blends, but the absorbencies decrease when the amount of poly(NIPAAm) is more than the compatible range in the blend system. The tensile strengths for the graft copolymers are larger than the corresponding blends. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 170–178, 2000  相似文献   

2.
The optimum conditions for crosslinking rigid poly(vinyl chloride) with trimethylolpropane trimethacrylate (TMPTMA) and peroxide have been examined. The extent of crosslinking was measured by determining gel content by Soxhlet extraction in tetrahydrofuran. Mechanical properties were measured at 130°C and dynamic viscoelastic measurements were carried out to detect changes in the glass transition temperature (Tg). It was found that 15 phr of TMPTMA and 0.3 phr of peroxide were optimum concentrations for maximizing the extent of crosslinking, tensile strength, and Tg. The lower molding temperature of 170°C was preferred to minimize thermal degradation. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2904–2909, 2007  相似文献   

3.
A sample of poly(vinyl chloride) (PVC) and a polar plasticizer consisting of dioctylphthalate (DOP) and triisopropylphenylphosphate (TIPPP) was prepared and found to possess some electrical conductivity. Different samples of PVC compositions were formulated from the PVC-DOP-TIPPP system and also variable proportions of the conductive materials polyaniline or the Ni salt of ethylene glycol bisadipate ester. Dibutyltindilaurate as a heat stabilizer, titanium oxide as a filler, and sandorin red 20 pigment were added. The effect of the structure of polyaniline and Ni adipate ester on the electrical and mechanical properties of the PVC–DOP–TIPPP system was studied to obtain a semiconductive plasticized PVC with good mechanical properties. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 685–693, 1998  相似文献   

4.
The influence of oil palm empty fruit bunch (OPEFB) fiber and oil palm empty fruit bunches grafted with poly(methyl methacrylate) (OPEFB‐g‐PMMA) on the tensile properties of poly(vinyl chloride) (PVC) was investigated. The OPEFB‐g‐PMMA fiber was first prepared with the optimum conditions for the grafting reaction, which were determined in our previous study. To produce composites, the PVC resin, OPEFB‐g‐PMMA fiber or ungrafted OPEFB fiber, and other additives were first dry‐blended with a laboratory blender before being milled into sheets on a two‐roll mill. Test specimens were then hot‐pressed, and then the tensile properties were determined. A comparison with the composite filled with the ungrafted OPEFB fiber showed that the tensile strength and elongation at break increased, whereas Young's modulus decreased, with the incorporation of 20 phr OPEFB‐g‐PMMA fiber into the PVC matrix. The trend of the tensile properties obtained in this study was supported by functional group analysis, glass‐transition temperature measurements, and surface morphological analysis. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
Blends of poly(vinyl chloride) (PVC) and acrylonitrile-chlorinated polyethylene-styrene (ACS) graft copolymer were prepared by melt blending. Mechanical properties were studied by the use of dynamic mechanical analysis (DMA), impact tests, tensile tests, and scanning electron microscopy (SEM). The DMA study showed that PVC is immiscible with chlorinated polyethylene in ACS but partially miscible with poly(styrene-co-acrylonitrile) (25% acrylonitrile content) in ACS. Mechanical property tests showed that there is a significant increase in the impact strength while other good mechanical properties of PVC such as high modulus and high strength remain. SEM observations supported the results of the mechanical properties studies. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 64: 399–405, 1997  相似文献   

6.
A crosslinking system consisting of 1,1‐di‐t‐butylperoxy‐3,3,5‐trimethyl cyclohexane peroxide and trimethylolpropane trimethacrylate (TMPTMA) has been used to introduce crosslinks into unplasticized poly(vinyl chloride) (PVC). The influence of the concentration of both reagents has been investigated, and crosslinking monitored by determination of the remaining sample weight after Soxhlet extraction with tetrahydrofuran. The system used (i.e., 0.5–2.0 phr peroxide with 5 to 15 phr TMPTMA) has been shown to be effective for crosslinking PVC. Gel contents of 30–40% have been obtained, premature crosslinking during processing is largely avoided, but thermal stability still needs to be improved. Considerable improvements in elevated temperature mechanical properties can be attained using an appropriate TMPTMA/peroxide concentration. The best tensile properties were obtained with 0.5 phr peroxide and 15 phr TMPTMA. Observed increases in Tg, also achievable with only 0.5 phr peroxide, but only slightly dependent on TMPTMA concentration, represent a useful increase in service temperature for the resulting compound. Lower peroxide levels may be adequate to achieve property improvements. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2657–2666, 2000  相似文献   

7.
Nitrile-butadiene rubber/poly(propylene carbonate) (NBR-PPC) elastomer was studied as a coupling agent of the blends of poly(vinyl chloride) (PVC) with poly(propylene carbonate) (PPC). It greatly improved the PVC/PPC system mechanical properties that were dependent on the amount and composition of the coupling agent. When the coupling agent consisted of a 70/30 ratio of NBR/PPC (in which NBR had 34% nitrile content) and 2.5 phr of benzoyl peroxide (BPO) initiator and underwent a prevulcanization, the blends of PVC/PPC displayed excellent mechanical properties by adding 8 phr of the coupling agent. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 63: 1107–1111, 1997  相似文献   

8.
刘亚群  程培培 《粘接》2011,(8):44-47
研究了聚氯乙烯与肉豆蔻酸钠的接枝反应,并制备梳形接枝PVC。利用FT-IR、1H-NMR对梳型接枝PVC的结构进行表征,并探讨反应条件对接枝率的影响。结果表明,梳形侧链成功接枝到PVC上,且在反应温度70℃、反应时间9h、单体用量50%时,接枝率最高。  相似文献   

9.
Different samples of filled poly(vinyl chloride) (PVC) compositions were formulated from PVC, a polar plasticizer mixture consisting of dioctylphthalate (DOP) and a chlorinated paraffin, and variable proportions of a white filler such as barite, calcium carbonate, kaoline, quartz, or talc; a conductive filler such as High Abrasion Furnace (HAF) carbon black; or a hydrated mineral filler such as aluminium hydroxide, magnesium hydroxide, or calcium hydroxide. Epoxidized soybean oil as a heat stabilizer and sandorin red (BRN) pigment were added. Electrical and mechanical studies show that the incorporation of white fillers produces a plasticized PVC of good electrical insulation character whereas the addition of HAF carbon black produces a sample with some electrical conductivity; both of them have good mechanical properties. Of the hydrated fillers studied aluminium hydroxide has been found to impart the best fire retardancy and good electrical properties for electric wires and cables. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 2657–2670, 1999  相似文献   

10.
The compatibility of poly(vinyl chloride) (PVC) with epoxidized styrene-butadiene copolymers is examined at different levels of epoxidation. The copolymers modified were a random (SBR) containing 45 wt% styrene and a triblock (SBS) with 30 wt% bound styrene. Blends were examined in the complete composition range and the approximate levels of epoxidation to ensure blend miscibility were determined. Epoxidized SBS (ESBS) was more effective in miscibility compared with ESBR requiring a lesser degree of epoxidation (43 versus 46 mol%). Tensile properties of the ESBS/PVC blends showed the efficiency of ESBS as a polymeric plasticizer even at levels of epoxidation (ca. 35 mol%) where immiscibility sets in.  相似文献   

11.
A novel grafted polymer was prepared in one step through free‐radical melt grafting in a single‐screw extruder. It was shown that the addition of styrene (St) to the melt‐grafting system as a comonomer could significantly enhance the grafting degree of methyl methacrylate (MMA) onto polypropylene (PP) and reduce the degradation of the PP matrix by means of Fourier transform infrared and melt flow rate testing, respectively. Then, the potential of using multimonomer‐grafted PP, which was designated PP‐g‐(St‐co‐MMA), as the compatibilizer in PP/poly(vinyl chloride) (PVC) blends was also examined. In comparison with PP/PVC blends, the average size of the dispersed phase was greatly reduced in grafted polypropylene (gPP)/PVC blends because of the addition of the PP‐g‐(St‐co‐MMA) graft copolymer. The tensile strength of the gPP/PVC blends increased significantly, and the impact strength was unchanged from that of the pure PP/PVC blends. The results of differential scanning calorimetry and scanning electron microscopy suggested that the compatibility of the PP/PVC blends was improved. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
Blends were prepared of poly(vinyl chloride) (PVC) with four different plasticizers; esters of aconitic, citric, and phthalic acids; and other ingredients used in commercial flexible PVC products. The thermal and mechanical properties of the fresh products and of the products after 6 months of aging were measured. Young's modulus of the PVC blends was reduced about 10‐fold by an increase in the plasticizer level from 15 to 30 phr from the semirigid to the flexible range according to the ASTM classification, but a 40‐phr level was required for PVC to retain its flexibility beyond 6 months. At the 40‐phr level, tributyl aconitate performed better than diisononyl phthalate (DINP) or tributyl citrate, in terms of lowering Young's modulus, both in the fresh materials and those aged for 6 months. The effects of the four plasticizers on the glass‐transition temperature (Tg) were similar, with Tg close to ambient temperature at the 30‐ and 40‐phr levels in freshly prepared samples and at 40–60°C in those aged for 6 months. The thermal stability of the PVC plasticized with DINP was superior among the group. Overall, tributyl aconitate appeared to be a good candidate for use in consumer products where the alleged toxicity of DINP may be an issue. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1366–1373, 2006  相似文献   

13.
Different samples of poly(vinyl chloride) (PVC) compositions were formulated from PVC, a polar plasticizer such as dioctylphthalate (DOP), and variable proportions of electrically conductive additives such as fast extrusion furnace (FEF) carbon black (CB), poly(vinylpyridine) (PVP), or polyacrylonitrile (PAN). Epoxidized soybean oil was added as a heat stabilizer. Samples of the PVC–CB system were also prepared by dispersing different concentrations of CB into the PVC matrix. The electrical studies showed that the addition of CB to the PVC–DOP system produces a plasticized PVC with high electrical conductivity whereas the compounding of PVC with CB produces a sample with much higher electrical conductivity. The effect of the structure of PVP and PAN on the electrical and mechanical properties of the PVC–DOP system was also studied to obtain a semiconductive plasticized PVC with good mechanical properties. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1590–1598, 2004  相似文献   

14.
The influence of solid‐state chlorinated polyethylene of various chlorine content and residual crystallinity on the mechanical properties of rigid poly(vinyl chloride) has been studied. The impact strength of poly(vinyl chloride) was found to increase significantly as 10–20 mass% chlorinated polyethylene, containing from 10.2 to 27.3% chlorine content (preferably 21.8% Cl) were added. This dependence corresponded to the higher elasticity and impact strength of the solid‐state chlorinated polyethylene with chlorine content below 30% as well as the microstructure of its chlorinated block fragments. Multicomponent system of high impact strength and good flowability, consisting of poly(vinyl chloride), chlorinated polyethylene, hydroxyl‐terminated polybutadiene, and ethylene–propylene–ethylidenenorbornene terpolymer was also obtained. Regardless of the incompatibility between the polymer components of this blend, the similarity in the chemical nature of poly(vinyl chloride) and chlorinated polyethylene blocks on one hand, and the methylene sequences in the chlorinated polyethylene and elastomers on the other, resulted in the formation of an efficient interfacial layer. The changes in the structure of the blends were established by both calorimetric and microscopic studies. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2602–2613, 2006  相似文献   

15.
Blends of flexible poly(vinyl chloride) (PVC) and a poly(hydroxybutyrate valerate) (PHBV) copolymer were prepared and characterized with different techniques. The tensile strength of PVC did not show a marked reduction at PHBV concentrations up to 50 phr, despite a lack of miscibility between the two polymers. The crystallization of the PHBV copolymer was markedly hindered by the presence of PVC, as calorimetric results revealed. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

16.
The thermal properties (thermal conductivity, thermal diffusivity, and specific heat capacity) of nitrile rubber (NBR)/poly(vinyl chloride) (PVC) blends were measured in the temperature range of 300–425 K. The incorporation of graphite into the NBR/PVC (30/70) matrix improved its thermal properties. Moreover, these properties slightly changed with the temperature. The thermal conductivity values of the prepared samples were compared with values modeled according to the Maxwell–Eucken, Cheng–Vachon, Lewis–Nielsen, geometric mean, and Agari–Uno models. The Agari–Uno model best predicted the effective thermal conductivity for the whole range of blend ratios and for the whole range of graphite contents in NBR/PVC (30/70)/graphite composites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

17.
Semi‐1 and semi‐2 interpenetrating polymer networks (IPNs) of poly(vinyl chloride) (PVC) and in situ formed poly(ethyl acrylate) (PEA) have been synthesized using diallyl phthalate and ethylene glycol dimethacrylate as the crosslinkers of PVC and PEA, respectively. These two types of IPNs have been compared with respect to their physical, mechanical, and thermal properties and an endeavor has been made to find a correlation of these properties with the morphology generated in these systems. The semi‐1 IPNs displayed a decrease in their tensile strength and modulus while in contrast; the semi‐2 IPNs exhibited a marginal increase with increasing crosslinked PEA incorporation. The semi‐1 and semi‐2 IPNs containing 10 and 30 wt % of PEA displayed a two‐stage degradation typical of PVC in their thermogravimetric and DSC studies while confirming the increased stability of the samples with higher percentages of PEA. The softening characteristics as detected by the extent of penetration of the thermomechanical probe as has been detected by thermomechanical analysis are in conformity with their mechanicals. The biphasic cocontinuous systems as explicit from the morphological studies reveal fibrillar characteristics in both the systems. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
A dimethyl dioctadecyl ammonium chloride modified organic montmorillonite (OMMT‐I.44P)/poly(vinyl chloride) (PVC) nanocomposite and anionic‐surfactant‐modified lanthanum organic montmorillonite (La‐OMMT)/PVC nanocomposites (with three different anionic surfactants for the La‐OMMTs) were prepared via melt‐intercalation technology. The effects of the La‐OMMTs and OMMT‐I.44P on the mechanical properties, flame retardancy, and smoke suppression of PVC were studied. X‐ray diffraction characterization showed that the La‐OMMTs were exfoliated in the PVC matrix. The mechanical properties of the nanocomposites were enhanced by the incorporation of the La‐OMMTs. Cone calorimetry and gas chromatography–mass spectrometry analyses indicated that the incorporation of the La‐OMMTs enhanced the flame retardancy and smoke suppression of the PVC nanocomposites. Scanning electron microscopy photos further showed that the residual char surfaces of La‐OMMT/PVC were all intact and, thus, provided better barriers to energy and smoke transport. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43951.  相似文献   

19.
To improve the antifouling property of poly(vinyl chloride) (PVC) membranes, a series of poly(methacrylic acid) grafted PVC copolymers (PVC‐g‐PMAA) with different grafting degree were synthesized via one‐step atom transfer radical polymerization process utilizing the labile chlorines on PVC backbones followed by one‐step hydrolysis reaction. PVC/PVC‐g‐PMAA blend membranes with different grafting degree and copolymer content were prepared by nonsolvent induced phase separation method. The surface chemical composition, surface charge, membrane structures, wettability, permeability, separation performances and the fouling resistance of blend membranes were carefully investigated. The results indicated that the PMAA chains were segregated towards the surface and the membranes were endowed with negative charge. The hydrophilicity and permeability of the blend membranes were obviously improved. Furthermore, the antifouling ability especially at neutral or alkaline environments was also significantly increased. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42745.  相似文献   

20.
Internal plasticization of poly(vinyl chloride) (PVC) was achieved in one-step using copper-mediated atom transfer radical polymerization to graft different ratios of random n-butyl acrylate and 2–2-(2-ethoxyethoxy)ethyl acrylate copolymers from defect sites on the PVC chain. Five graft polymers were made with different ratios of poly(butyl acrylate) (PBA) and poly(2–2-(2-ethoxyethoxy)ethyl acrylate) (P2EEA); the glass transition temperatures (Tg) of functionalized PVC polymers range from − 25 to − 50°C. Single Tg values were observed for all polymers, indicating good compatibility between PVC and grafted chains, with no evidence of microphase separation. Plasticization efficiency is higher for polyether P2EEA moieties compared with PBA components. The resultant PVC graft copolymers are thermally more stable compared to unmodified PVC. Increasing the reaction scale from 2 to 14 g produces consistent and reproducible results, suggesting this method could be applicable on an industrial scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号