首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanical properties, molecular weight, X‐ray diffraction, and differential scanning calorimetry (DSC) characterization of blends of virgin high‐density polyethylene (HDPE) with two types of recycled material were investigated. The recycled came from urban plastic waste; one kind was only washed and grounded and the other was extruded and pelletized to remove most of contaminant particles. Starting with the 30/70 virgin/grounded recycled and 50/50 virgin/pelletized recycled blends the recycled content was increased in both blends and compatibilizing agents were used to increase the blend performance. A mixture of phenolic antioxidants and phosphite costabilizers under the name of Recycloblend?, ethylene vinyl acetate (EVA) copolymer, low‐density polyethylene (LDPE), and linear low density polyethylene (LLDPE) were used as compatibilizers. The effect of these additives and the recycled content on the performance of extrusion blow‐molded bottles was determined. The results suggest that blends of virgin/grounded recycled and virgin/pelletized recycled HDPE, in general, were not significantly different among each other and both had a quite similar behavior than the virgin HDPE when compatibilizing agents were used. The addition of compatibilizing agents yielded a material with properties similar to those for the virgin HDPE, helping to reduce the effect of polymers degradation on the rheological and mechanical behavior, with Recycloblend and LLDPE being the most effective for the blends with grounded recycled material, and LLDPE y EVA, for the blends with pelletized recycled. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3696–3706, 2006  相似文献   

2.
This work was aimed to counteract the effect of ethylene‐α‐olefin copolymers (POE) by reinforcing the polypropylene (PP)/POE blends with high density polyethylene (HDPE) particles and, thus, achieved a balance between toughness and strength for the PP/POE/HDPE blends. The results showed that addition of HDPE resulted in an increasing wide stress plateau and more ductile fracture behavior. With the increase of HDPE content, the elongation at break of the blends increased rapidly without obvious decrease of yield strength and Young's modulus, and the notched izod impact strength of the blends can reach as high as 63 kJ/m2 at 20 wt % HDPE loading. The storage modulus of PP blends increased and the glass transition temperature of each component of the blends shifted close to each other when HDPE was added. The crystallization of HDPE phase led to an increase of the total crystallinity of the blend. With increasing HDPE content, the dispersed POE particle size was obviously decreased, and the interparticle distance was effectively reduced and the blend rearranged into much more and obvious core‐shell structure. The fracture surface also changed from irregular striation to the regularly distant striations, displaying much obvious character of tough fracture. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

3.
Three different polyethylene/polypropylene (PE/PP) blends were microcellular foamed and their crystallinities and melt strengths were investigated. The relationship between crystallinity, melt strength, and cellular structure was studied. Experimental results showed that the three blends had similar variation patterns in respect of crystallinity, melt strength, and cellular structure, and these variation patterns were correlative for each blend. For all blends, the melt strength and PP melting point initially heightened and then lowered, the PP crystallinity first decreased, and then increased as the PE content increased. At PE content of 30%, the melt strength and PP melting point were highest and the PP crystallinity was least. The blend with lower PP crystallinity and higher melt strength had better cellular structure and broader microcellular foaming temperature range. So, three blends had best cellular structure at PE content of 30%. Furthermore, when compared with PE/homopolymer (hPP) blend, the PE/copolymer PP (cPP) blend had higher melt strength, better cellular structure, and wider microcellular foaming temperature range, so it was more suited to be microcellular foamed. Whereas LDPE/cPP blend had the broadest microcellular foaming temperature range because of its highest melt strength within three blends. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 4149–4159, 2007  相似文献   

4.
In this study, the effects of batch processing conditions (foaming time and temperature) and blend composition as well as the effect of incorporating wood fiber into the blends on the crystallinity, sorption behavior of CO2, void fraction, and cellular morphology of microcellular foamed high‐density polyethylene (HDPE)/polypropylene (PP) blends and their composites with wood fiber were studied. Blending decreased the crystallinity of HDPE and PP and facilitated microcellular foam production in blend materials. The void fraction was strongly dependent on the processing conditions and on blend composition. Foamed samples with a high void fraction were not always microcellular. The addition of wood fiber inhibited microcellular foaming. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2842–2850, 2003  相似文献   

5.
The aim of this work was to study the compatibilizing effect of the triblock copolymer poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene) (SEBS) on the morphology and mechanical properties of virgin and recycled polypropylene/high‐impact polystyrene (PP/HIPS) blends. The components of the blend were obtained from municipal plastics waste (MPW), with the PP obtained from blue mineral water bottles, symbolized as PPb, and the HIPS from disposable cups. These materials were preground, washed only with water, dried with hot air, and ground again (PPb) or agglutinated (HIPS). Blends of PPb and HIPS in three weight ratios (6:1, 6:2, and 6:3) were prepared, and three concentrations of SEBS (5.0, 6.0, and 6.7% w/w) were used for investigations of its compatibilizing effect. Scanning electron microscopy (SEM) showed that SEBS reduced the diameter of HIPS dispersed particles that were globular and fibril shaped, along with improving the adhesion between the dispersed phase and the matrix. On the other hand, SEBS interactions with PPb and HIPS influenced the mechanical properties of the compatibilized PPb/HIPS/SEBS blends. The optimal concentration of SEBS was 5 wt % for application to composite films with similar characteristics to synthetic paper. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 747–751, 2003  相似文献   

6.
The influence of compatibilization on the dynamic mechanical properties of polypropylene (PP) binary blends with polyamide‐6 (PA6), Talc, and oxidized PP (OPP) was investigated. The oxidation of PP homopolymer was performed in a internal mixer by using air as a oxidizing agent (under atmospheric pressure) and dodecanol‐1 as an accelerator at 180°C for 6½ h [Abdouss, M.; Sharifi‐Sanjani, N.; Bataille, P. J Appl Polym Sci 1999, 36, 10]. In the blends, OPP was used as a blend component and compared with PP over the whole concentration range. Pressed film blends of PP/OPP, PP/OPP/Talc, and PP/OPP/PA6 were examined by dynamic mechanical analyzer, thermal gravimetry analysis, and scanning electron microscopy. Mechanical properties such as tensile strength, modulus of elasticity, elongation, melt flow index, and hardness of the blends were measured. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2871–2883, 2004  相似文献   

7.
The objective of this work was to study the effectiveness of low‐cost commercial compatibilizers and several processes (internal mixer, single‐ and twin‐screw extruders) for two types of plastic blends: high‐density polyethylene/polypropylene and high‐density polyethylene/polystyrene blends, to gain insight into the recycling of wastes from those frequently encountered mixed plastics. Blends going from a pure A to a pure B component, with and without a compatibilizer, were prepared using an internal mixer, a corotating twin‐screw extruder, as well as a single‐screw extruder to follow an industrial‐convenient process. In both cases, the analyses of blend morphologies highlighted the poor adherence between the two phases in the uncompatibilized blends. Compatibilized blends display better adherence between phases and the ability to process blends made from both single‐ and twin‐screw extruders. When adding a compatibilizer, the viscosity of each blend (PE/PP or PE/PS) increased due to a better adhesion of the phases. Charpy impact tests showed that the presence of the compatibilizer in PE/PS blends increased their impact properties. Indeed, the improvement of the adhesion between the two phases enabled stress transfer at the interface. A single‐screw extruder seems to be efficient as a processing method on an industrial scale when a compatibilizer is used. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2475–2484, 2003  相似文献   

8.
Blending of recycled polyethylene terephthalate (RPET) from waste bottles with polypropylene (PP) was performed in an attempt to enhance the processability of RPET. The idea of blending RPET with PP sprouted from the intention of recycling PET bottles together with their PP‐based caps. Therefore, preliminary blending of RPET with neat PP (RPET/PP) was performed at various PP and compatibilizer contents. Morphological analyses on the extruded pellets of uncompatibilized blends indicate that the PP particle size and state of dispersion at skin and core regions were vastly different. The particles at the skin were at least 10 times smaller than that at the core although the size distribution was very wide. With the incorporation of just 5 phr of compatibilizer, the particles at the core region became significantly smaller and appeared to emulate that of the skin region. Furthermore, the overall homogeneity of the blends was vastly improved irrespective of PP content in the blend. The reduction in particle size and improved homogeneity inherently reduced stress concentration points and enhanced the mechanical performance of the blends. More importantly, the incorporation of PP into RPET significantly increased the degradation temperature of the blends, provided the dispersion of PP phase in RPET was excellent. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
This work evaluated the incorporation of recycled high‐density polyethylene (HPDE) in the virgin polymer by measuring its dielectric strength. Post‐consumer containers of HDPE were collected and passed through the basic processes of plastics recovery: washing, grinding, and drying. Formulations were elaborated containing 0, 25, 50, 75, and 100% of recycled material incorporated to the virgin resin by extrusion and injection processes, stabilized with 0.2% Irganox B215. Samples of these materials were submitted to dielectric breakdown analysis by using an electrode‐type sphere—plane and ramp of positive electric tension. The data were treated and analyzed by using the statistical distribution of Weibull, and the Maximum Likelihood method. The degree of crystallinity was measured by X‐ray diffraction. Atomic absorption spectrophotometry was employed to identify metallic residues present in the samples. The results showed that there is a 17% decrease in the values of the dielectric strength when we compare the virgin HDPE with the 100% recycled. Therefore, formulations containing up to 50% of recycled material may be taken into consideration in the development of products in electric insulating systems.© 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91:1730–1735, 2004  相似文献   

10.
The influence of the molecular weight of polyethylene on the morphology and mechanical properties of blends of high‐density polyethylene (HDPE) dispersed as droplets in a poly(ethylene terephthalate) (PET) matrix at various compositions was investigated. The difference of morphologies can be easily explained by the influence of the molecular weight on the viscosity ratio and therefore, on the critical capillary number. The compatibilizing efficiency of copolymers containing glycidyl methacrylate groups was also addressed in relation to their nature, the protocol for their drying and the molecular weight of the HDPE phase. The increase of adhesion between PET and HDPE was found to have a larger influence on tensile properties than the reduction of interfacial tension. The amount of compatibilizer needed for adhesion improvement depends on the interfacial area that is defined by both the interfacial tension and viscosity ratio of the components. A qualitative relation between the optimum amount of compatibilizer and the critical capillary number can be written. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

11.
PP/PET共混熔体的流变性能研究   总被引:3,自引:0,他引:3  
以PP-g-AA作增容剂,研究了PP/PET共混熔体的流变行为。讨论了温度、剪切速率以及PET和增容剂含量对熔体表观粘度、非牛顿指数等方面的影响。结果表明,PP/PET共混物熔体表观粘度随剪切速率的增大而降低,随PET及增容剂含量的增加而下降,随温度的升高而下降。PET和增容剂的加入,在共混熔体中起到了增塑剂的作用。  相似文献   

12.
The reactive compatibilization of immiscible polymers such as high‐density polyethylene (HDPE) and poly(ethylene terephthalate) (PET) by interfacial grafting of maleic anhydride (MA) without initiator in the molten state was investigated in this study. Grafting reaction of MA onto HDPE was carried out in a Rheocord HAAKE mixer varying reaction parameters such as the temperature, the shear rate, and the time of reaction. Then, the purified copolymers were characterized by infrared spectrometry and the MA content of HDPE‐g‐MA copolymers was determined by volumetric titration. It has been shown that thermomechanical initiation is sufficient to reach grafting yield of 0.3 to 2.5 wt % of MA. We studied then the compatibilization of HDPE/PET blends by interfacial grafting of MA. The in situ interfacial reaction leads to the formation of HDPE‐g‐MA copolymer which acts as a compatibilizer in the blends. The foremost interest of this work is that it provides a simple way of compatibilization of immiscible blends of polyolefin and polyester in one transformation step without using free‐radical initiators. The mechanical properties of the blends are strongly improved by the addition of small quantities of MA. The SEM observations of the compatibilized blends show a deep modification of the structure (i.e., enhanced regularity in the nodule dispersion and better interfacial adhesion). © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 874–880, 2001  相似文献   

13.
PP/PE 93/7 model virgin blends and recycled scraps were compatibilized with Royalene (EPDM/PE 65/35 blend) and mechanically tested. No differences in impact and tensile properties between them were found. However, the tensile-impact strength increased almost twice with 10%-compatibilized sample in comparison with uncompatibilized ones. The yield stress of blends containing 10% Royalene decreased to 75–80% of the original value. This effect is in agreement with microhardness measurements; the increase in the compatibilizer content causes softening of the blend. The elongation at break and elongation at yield do not depend on the compatibilizer concentration. The compatibilizer does not influence the degree of crystallinity (WAXS data) of the blends either. Vickers microhardness is in good agreement with Tabor's relationship. The differences between long periods of HDPE in Royalene and LDPE in PP/PE blends (SAXS) proved PE/EPDM interaction. The interaction plays a key role in the toughening of PP/PE blends. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

14.
The rheological behaviors of noncompatibilized and compatibilized polypropylene/polyethylene terephthalate blends (80/20) in relation with their morphology were studied at two constant levels using maleic anhydride‐modified styrene‐ethylene‐butylene‐styrene polymer. By scanning electron microscopy of cryofractured surfaces, the morphology of the blends was examined after etching. The frequency sweep and step strain experiments were carried out for the blends. The frequency sweep results indicated that increasing the compatibilizer causes behavioral changes of the rheological properties, which could be related to the aggregation of the dispersed particles with rubbery shell. Also, the frequency sweep and step strain experiments in linear region, after cessation of simple steady shear flow with various preshear rates (higher shear stress values than Gp), were done on compatibilized blend. The results showed that the morphology characteristics, defined by the aggregation of the dispersed particles based on rheological experimental data, were destroyed and replaced by an alignment in the flow direction for present imposed shear rates. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
The ternary blends of high‐density polyethylene (PE), EPDM terpolymer and polypropylene (PP) have been used as a model low interfacial tension system to study encapsulation dynamics in ternary blends and their relation to the blends' mechanical properties. It was found that the modulus, tensile strength and impact resistance can be improved by PE addition if the PE is localized within the EPDM phase. A range of blend morphology was found depending on the PE viscosity and polymer incorporation sequence in the twin‐screw extruder. In the most favorable sequence, PE and EPDM were mixed together prior to their dispersion in the PP matrix. This practice resulted in a 50% increase in impact resistance when compared to mixing the three components in a single‐step.  相似文献   

16.
Processability at extrusion coating and mechanical properties of the films obtained are investigated by means of linear and nonlinear rheological measurements and tensile tests for blends of polypropylene (PP) and linear low‐density polyethylene (LLDPE). Both materials are produced by metallocene catalyst. The processability of PP is found to be improved by the addition of LLDPE; the blend shows low level of motor torque and head pressure in an extruder and small level of neck‐in as compared with pure PP. Further, the anisotropy of ultimate tensile strength, which is prominent for PP, is reduced by blending with LLDPE. As a result, the blend having 20 wt % of LLDPE shows appropriate properties in the molten state for extrusion coating and in the solid state as a film. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
Phase morphology of polymer blends PP/COC, where PP is polypropylene and COC is a copolymer of ethene and norbornene, was characterized by means of scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM). PP/COC blends were prepared by injection molding and their morphology was studied for six different compositions (90/10, 80/20, 70/30, 60/40, 50/50, and 25/75 wt %). The intention was to improve PP properties by forming COC cocontinuous phase, which should impart to the PP matrix higher stiffness, yield stress, and barrier properties. Surprisingly enough, all studied blends were found to have fibrillar morphology. In the 90/10, 80/20, and 70/30 blends, the PP matrix contained fibers of COC, whose average diameter increased with increasing COC fraction. In the 60/40 blend, the COC component formed in the PP matrix both fibers and larger elongated entities with PP fibers inside. The 50/50 blend was formed by COC cocontinuous phase with PP fibers and PP cocontinuous phase with COC fibers. In the 25/75 blend, PP fibers were embedded in the COC matrix. In all blends, the fibers had an aspect ratio at least 20, were oriented in the injection direction, and acted as a reinforcing component, which was proven by stress–strain and creep measurements. According to the available literature, the fibrous morphology formed spontaneously in PP/COC is not common in polymer blends. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 253–259, 2004  相似文献   

18.
A novel linear low‐density polyethylene (LLDPE)/polypropylene (PP) thermostimulative shape memory blends were prepared by melt blending with moderate crosslinked LLDPE/PP blend (LLDPE–PP) as compatibilizer. In this shape memory polymer (SMP) blends, dispersed PP acted as fixed phase whereas continuous LLDPE phase acted as reversible or switch phase. LLDPE–PP improved the compatibility of LLDPE/PP blends as shown in scanning electron microscopic photos. Dynamic mechanical analysis test showed that the melt strengths of the blends were enhanced with increasing LLDPE–PP content. A shape memory mechanism for this type of SMP system was then concluded. It was found that when the blend ratio of LLDPE/PP/LLDPE–PP was 87/13/6, the blend exhibited the best shape memory effect at stretch ratio of 80%, stretch rate of 25 mm/min, and recovery temperature of 135°C. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

19.
The mechanical properties of high-density polyethylene (HDPE)-rich i-PP/HDPE blends were studied. Two grades of HDPE were investigated, one with a melt viscosity close to that of the polypropylene (PP) and the other having a much lower melt viscosity. Compatibilization of the 10/90 i-PP/HDPE blend with three copolymers (an ethylene/propylene/diene [EPDM] copolymer and two ethylene/vinylacetate [EVA] copolymers, differing in their VA content) was also investigated. Blends of PP with the low melt viscosity HDPE displayed poor mechanical properties. It was not possible to improve these properties sufficiently with EPDM or EVA. In the case where viscosity matching was achieved between PP and HDPE, addition of i-PP (up to 30%) to HDPE resulted in a large drop in the impact strength of the blends, compared to that of the neat HDPE. A large drop (>50%) was also observed in the ultimate tensile elongation. However, the flexural modulus, yield stress, and ultimate tensile strength all increased with the introduction of i-PP into HDPE. Modification of these blends with an EPDM resulted in the return of all properties to values very close to those of the neat HDPE. The ultimate tensile elongation of the EPDM-modified i-PP/HDPE blend even exceeded that of the virgin HDPE. It was also found that although EVAs can be used to compatibilize these blends these additives were not as effective as was the EPDM. © 1996 John Wiley & Sons, Inc.  相似文献   

20.
在单螺杆挤出机上,利用路易斯酸实现了大分子间的Friedel—Crafts烷基化反应。考察了不同催化剂体系、催化剂用量及工艺条件对合金性能的影响。结果显示:对于质量比为70.0:30.0的高密度聚乙烯/聚苯乙烯合金体系,通过反应挤出,可以就地生成接枝共聚物;苯乙烯单体的加入有利于接枝物的形成;加入0.8份AlCl3、0.5份苯乙烯单体,控制合适的螺杆温度以及螺杆转速为60r/min时,合金的综合性能较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号