首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The high-speed melt spinning of poly(ethylene 2,6-naphthalene dicarboxylate) (PEN) was performed up to the take-up velocity of the ultra-high-speed region, 9 km/min. From the investigations of the structure and physical properties of the as-spun fibers, the high-speed spinning of PEN was divided into three regions in terms of the mechanism of fiber structure formation. The first region is the take-up velocity of up to 2.5 km/min and the birefringence of up to 0.08 where only a slight increase in molecular orientation was attained. At the take-up velocity of 2.5–4.5 km/min and the birefringence of 0.08–0.25, although some experimental evidences indicated that the orientation-induced crystallization did not occur, there was an increase in the fiber density which suggested the formation of some ordered structure. At the take-up velocity > 4.5 km/min and birefringence > 0.25, the orientation-induced crystallization occurred. The fibers obtained in this region were characterized by the formation of the crystalline structure dominated by the β form. The presence of the necklike deformation in the spinning line was also confirmed. The solidification temperature of the spinning line analyzed from the diameter profile suggested that the formation of β modification crystals occurred at relatively low crystallization temperatures in comparison with that in an isotropic state. Therefore it was indicated that the presence of elongational stress in the spinning line promoted the formation of the β modification crystals. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65: 1415–1427, 1997  相似文献   

2.
Poly(ethylene terephthalate) (polyester) fibres were spun using a high-speed melt spinning method. By changing the spinning conditions, polyester fibres with differences in crystallinity, birefringence and melting point were obtained. The dyeing behaviour of these fibres was investigated using CI Disperse Red 1. The degree of crystallisation of polyester lowered the dyeability. The fibres with lower molecular orientation and larger crystallite size showed better dyeability.  相似文献   

3.
The necking behavior in the high‐speed melt‐spinning process of poly(ethylene terephthalate) (PET) was analyzed using a mathematical simulation under a nonisothermal condition. A constitutive model into which the strain‐rate dependence of viscosity and the strain‐hardening effect are incorporated was used. Based on the simulated results, the cause of a local reduction of apparent viscosity was found to be due mainly to high strain rate. Also the onset of crystallization, if it occurred, was found to happen near the end of the neck. In addition, with no crystallization involved, the necking can still occur. The deformation process in high‐speed spinning of PET was found to consist of two regions along the spin line: a Newtonian flow region and a rubberlike deformation region. The necking behavior is discussed here in terms of strain‐rate sensitivity and strain‐hardening parameter. As a result, a criterion for the onset of stable necking has been obtained. The necking behavior does not seem to be essentially different from that in cold drawing. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 446–456, 2000  相似文献   

4.
A polylactide (PLA type LA 0200 K) was spun in high-speed melt spinning and spin drawing processes. The fibers were characterized with regard to the degree of crystallinity, the orientation, and the textile physical properties. The polymer was produced by a reactive extrusion polymerization process, and its hydrolytic degradation during the processes of drying and spinning and its thermal and rheological properties were characterized. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 2785–2797, 1999  相似文献   

5.
The ability to produce as-spun poly(ethylene terephthalate) (PET) filaments that possess previously unsurpassed levels of as-spun orientation and tensile properties was achieved through the implementation of a device described as a liquid isothermal bath (LIB). Although much has been published regarding the general effect of the LIB on various properties and structural features, the results of the present study further contribute to the continued development of this unique technology by investigating the positional dependence of the device, as well as the effect of a subsequent annealing process. Characterization methods employed in the present study included birefringence, percent crystallinity, tensile properties, loss tangent temperature dependence, DSC melting behavior, and wide-angle and small-angle X-ray scattering. Strong inferences drawn from the loss tangent temperature dependence indicate that all of the as-spun and annealed LIB filaments possess a more rigid amorphous phase than that present in either the as-spun or annealed no LIB filament and that the extent of rigidness appears to become more profound as the bath is operated at a position more distant from the spinneret. DSC melting endotherms of the as-spun LIB filaments consist of dual overlapping peaks, one component of which is believed to represent the presence of a novel extended chain type of crystalline structure. Application of a simple two phase model allowed for the quantitative evaluation of an amorphous orientation factor, which was found to range, depending on the bath position, from 1.7 to 3.9 times higher in the as-spun LIB filaments than that present in the as-spun no LIB filament. The annealing process was found to play an important role in facilitating the transformation from an as-spun highly oriented and predominantly amorphous structure to a well-defined semicrystalline fibrillar structure. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 2051–2068, 1998  相似文献   

6.
Melt spinning of poly(ethylene terephthalate) was studied by measuring the filament tension at the take-up roll and by measuring filament diameter D(X) at various distances X below the spinnerette. A new method is developed to calculate temperature distribution both along and perpendicular to the fiber axis. Results of these calculations are compared with experimental values. The attenuation of filament diameter depends primarily on the take-up speed and the output rate. Spinning temperature and molecular weight have relatively small effects. Mass flow rate and take-up speed are the major factors controlling the cooling rate, while other spinning parameters such as polymer molecular weight and spinnerette orifice size have a small effect. The Trouton viscosity β is both temperature and molecular weight dependent. Values of β derived from these experiments can be expressed mathematically as follows:   相似文献   

7.
Poly(trimethylene terephthalate) has been melt spun at various take-up velocities from 0.5 to 8 km/min to prepare fiber samples. The effect of take-up velocity on the structure and properties of as-spun fibers has been characterized through measurements of birefringence, density, wide-angle X-ray scattering, DSC melting behavior, tensile properties and boiling water shrinkage (BWS). The birefringence exhibits a maximum at take-up velocities between 3 and 4 km/min. The fiber samples spun at the lower take-up speeds have essentially amorphous structures, while the filaments prepared at a velocity range higher than 4 km/min all possess an obvious crystalline structure. With increasing take-up speed, a steady improvement in tensile strength, elongation to break, and BWS is found, whereas the initial modulus remains almost constant within the measurement error, over the entire take-up speed range between 0.5 and 8 km/min.  相似文献   

8.
Data on high-speed spinning using a heating zone were analyzed. It was shown that in spinning at a speed of 3500–4000 m/min using a heating zone, it is possible to attain high orientation corresponding to the level of ultrahigh-speed spinning at 7000 m/min.All-Russian Scientific-Research Institute of Synthetic Fibres. Tver' Translated from Khimicheskie Volokna No. 3. pp. 4–6. May–June. 1966.  相似文献   

9.
X.Q. Shi 《Polymer》2006,47(2):611-616
Ultra-high-speed bicomponent spinning of poly(butylene terephthalate) (PBT) as sheath and biodegradable poly(butylene adipate-co-terephthalate) (PBAT) as core was accomplished with the take-up velocity up to 10 km/min. The structure development of the individual component and the properties of PBT/PBAT fibers were investigated through the measurements on differential scanning calorimetry, wide-angle X-ray diffraction, birefringence and tensile test. Due to the mutual interaction between two polymer-melts along the spinline, the processability of both components in PBT/PBAT bicomponent spinning was improved compared with those of corresponding single component spinnings. Furthermore, in PBT/PBAT fibers, the structure development of PBT component was found to be greatly enhanced, which led to the improvement in its thermal and mechanical properties; whereas the structure development of PBAT component was significantly suppressed, in which nearly non-oriented structure was observed in both crystalline and amorphous phases.  相似文献   

10.
The high‐speed melt spinning of sheath/core type bicomponent fibers was performed and the change of fiber structure with increasing take‐up velocity was investigated. Two kinds of polyethylene, high density and linear low density (HDPE, LLDPE) with melt flow rates (MFR) of 11 and 50, [HDPE(11), LLDPE(50)], and poly(ethylene terephthalate) (PET) were selected and two sets of sheath/core combinations [HDPE(11)/PET and LLDPE(50)/PET bicomponent fibers] were studied. The fiber structure formation and physical property effects on the take‐up velocities were investigated with birefringence, wide‐angle X‐ray diffraction, thermal analysis, tensile tests, and so forth. In the fiber structure formation of PE/PET, the PET component was developed but the PE components were suppressed in high‐speed spinning. The different kinds of PE had little affect on the fine structure formation of bicomponent fibers. The difference in the mechanical properties of the bicomponent fiber with the MFR was very small. The instability of the interface was shown above a take‐up velocity of 4 km/min, where the orientation‐induced crystallization of PET started. LLDPE(50)/PET has a larger difference in intrinsic viscosity and a higher stability of the interface compared to the HDPE(11)/PET bicomponent fibers. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2254–2266, 2000  相似文献   

11.
12.
Uniaxial and plane strain compression experiments are conducted on amorphous poly(ethylene terephthalate) (PET) and poly(ethylene terephthalate)-glycol (PETG) over a wide range of temperatures (25-110 °C) and strain rates (.005-1.0 s−1). The stress-strain behavior of each material is presented and the results for the two materials are found to be remarkably similar over the investigated range of rates, temperatures, and strain levels. Below the glass transition temperature (θg=80 °C), the materials exhibit a distinct yield stress, followed by strain softening then moderate strain hardening at moderate strain levels and dramatic strain hardening at large strains. Above the glass transition temperature, the stress-strain curves exhibit the classic trends of a rubbery material during loading, albeit with a strong temperature and time dependence. Instead of a distinct yield stress, the curve transitions gradually, or rolls over, to flow. As in the sub-θg range, this is followed by moderate strain hardening and stiffening, and subsequent dramatic hardening. The exhibition of dramatic hardening in PETG, a copolymer of PET which does not undergo strain-induced crystallization, indicates that crystallization may not be the source of the dramatic hardening and stiffening in PET and, instead molecular orientation is the primary hardening and stiffening mechanism in both PET and PETG. Indeed, it is only in cases of deformation which result in highly uniaxial network orientation that the stress-strain behavior of PET differs significantly from that of PETG, suggesting the influence of a meso-ordered structure or crystallization in these instances. During unloading, PETG exhibits extensive elastic recovery, whereas PET exhibits relatively little recovery, suggesting that crystallization occurs (or continues to develop) after active loading ceases and unloading has commenced, locking in much of the deformation in PET.  相似文献   

13.
The effects of quenching air temperature, quenching air speed and winding speed in the melt spinning process of poly(ethylene terephthalate) fibres with a titre of 147 dtex and 96 filaments on dye uptake were investigated. The ranges used for quenching air temperature, quenching air speed and winding speed were 17–27 °C, 0.3–0.7 m/s and 2600–3800 m/min, respectively. Specimens were dyed and their colour strengths (K/S values) were measured using a spectrophotometer. The results were statistically analysed.  相似文献   

14.
A series of branched poly(ethylene terephthalate) samples was prepared by employing 0.07–0.42 mol % trimethylolpropane (TMP) for melt polycondensation. These polymers were characterized with respect to molar mass, intrinsic viscosity, and melt viscosity. Spinning into fibers took place at spinning speeds ranging from 2500 to 4500 m/min. The molecular orientation of the fibers as measured by birefringence and polarized fluorescence decreases with growing amounts of TMP, as does crystallinity. Thus with slightly branched polymers, higher spinning speeds than with a linear polymer can be used to achieve a certain property profile. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 728–734, 1999  相似文献   

15.
Poly(ethylene terephthalate) was submitted to five reprocessing cycles by extrusion. The materials were analyzed with oligomer and after oligomer extraction. The nonisothermal crystallization of the five samples was investigated by differential scanning calorimetry. Samples with oligomer content and carboxylic end group concentrations between 44 and 98 eqw × 106 g presented a nonlinear correlation with the crystallization temperature. After the oligomer extraction of the polymer, this correlation is linear. The nonisothermal crystallization results were analyzed using the Ozawa model. The polymers containing oligomers obey the Ozawa model for the first reprocessing cycle. After oligomer extraction, the polymers obey the Ozawa model from the first to the third reprocessing cycle. In both cases, the exponential n values are close to 2.0. For the other cycles, deviations from this model occur. The activation energy was calculated using the Kissinger and Varma models. The values obtained for the five reprocessed samples were inversely proportional to the molar mass when analyzed by both models. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 525–531, 2004  相似文献   

16.
The fibrillar and the lamellar structures in a range of poly(ethylene terephthalate) fibers were studied by small-angle X-ray scattering. The intensity maxima in the lamellar peaks lie on a curve that can be described as an ellipse. Therefore, the two-dimensional images were analyzed in elliptical coordinates. The dimensions of the coherently diffracting lamellar stack, the dimensions of the fibrils, the interfibrillar spacing, and the orientation of the lamellar surfaces were measured in addition to the lamellar spacing. The orientation of the lamellar planes and the size of the lamellar stacks had a better correlation with mechanical properties of the fibers than did the lamellar spacing. In particular, longer and wider lamellar stacks reduced fiber shrinkage, as did the closer alignment of the lamellar normal to the fiber axis. These structural features were also associated with lower tenacity. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 2527–2538, 1998  相似文献   

17.
The development of structure during steady-state high-speed spinning of poly(ethylene terephthalate) has been correlated with the stress on the threadline. In particular, it is shown that a critical stress at the freeze point of 0.08–0.09 g/denier (9.5–10.6 MPa) is necessary for the occurrence of threadline crystallization independent of polymer molecular weight or process variables such as windup speed or filament character.  相似文献   

18.
熔融纺丝法制备聚醚砜纤维   总被引:5,自引:0,他引:5  
将聚醚砜(PES)树脂进行熔融纺丝,制得PES纤维,对PES树脂的可纺性、PES纤维的拉伸条件、力学性能、热性能、阻燃性能进行了研究。结果表明:PES树脂在熔融温度380℃,卷绕速度300m/min的条件下,可纺性较好;PES纤维适合在较低温度和较低速度下拉伸,在30℃下低速拉伸,PES纤维可拉伸3倍,其强度可达2.30cN/dtex;PES纤维的热稳定较好,其初生纤维的起始分解温度为442.15℃;PES纤维的阻燃性能较好,极限氧指数为26.9%。  相似文献   

19.
以对苯二甲酸(PTA)、乙二醇(EG)、异山梨醇(ISB)为原料,通过直接熔融缩聚法合成聚(对苯二甲酸乙二醇酯-co-对苯二甲酸异山梨醇酯)(PEIT)共聚酯。利用差示扫描量热法(DSC)研究了共聚酯的结晶行为,采用Avrami方程分析了共聚酯的等温结晶动力学。结果表明,PEIT共聚酯结晶行为受共聚组成和结晶温度影响。随着ISB用量的增加或结晶温度的降低,共聚酯半结晶周期t1/2增加、结晶速率变慢;ISB摩尔分数超过20%,共聚酯无法结晶。  相似文献   

20.
High‐speed spinning of high molecular weight poly(ethylene terephthalate) (PET) having an intrinsic viscosity of 0.98 dL/g was performed at the take‐up velocity range of 2.5–5.5 km/min. The structure of the as‐spun filaments was analyzed by density, birefringence, WAXS, DSC, boiling water shrinkage, and tensile properties. Stress‐induced crystallization takes place above 3 km/min, which is confirmed by the steep increase in density, the growth of the crystal size, melting point increase, and the decrease in boiling water shrinkage. The plot of crystallinity versus birefringence shows that crystallinity increases drastically after birefringence reaches the value of about 0.075. A comparison with the data of other researchers will clearly present the effects of molecular weight on the properties of PET filaments spun at high speed, for example, the take‐up velocity range of the steep increase in density for high molecular weight PET is lower than that for low molecular weight PET by about 1 km/min. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1283–1291, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号