共查询到19条相似文献,搜索用时 62 毫秒
1.
2.
针对经验小波变换(Empirical Wavelet Transform,EWT)对强噪声环境下风力机齿轮箱轴承轻微故障特征提取不足的问题,利用滑移窗口提取子带的连续平均谱负熵(Continuous Average Spectral Negentropy,CASN)对EWT算法进行改进。通过CASN-EWT方法分解风力机齿轮箱轴承故障信号,采用峭度准则对所得分量进行筛选并重构,再开展包络分析,准确提取出故障特征。结果表明:CASN-EWT方法在保留EWT算法自适应性和有效避免模态混叠效应与端点效应优点的同时,能够极大提高EWT分解算法对噪声影响的鲁棒性,有利于准确提取故障特征频率,实现故障精确识别。 相似文献
3.
4.
小波分析法在旋转机械故障诊断中的应用 总被引:5,自引:1,他引:5
分析了FFT频谱分析方法对处理非平稳信号的不足,即分析精度不高,确认小波分析对非平稳信号的处理是有效的。分别介绍了Haar小波和Dilation小波的基本原理并成功地尝试了小波分析在旋转机械故障诊断中的作用。 相似文献
5.
6.
7.
将小波神经网络技术和D-S证据理论引入到发动机故障诊断中,利用小波神经网络良好的局部分析能力和融合特性,以及D-S证据理论对于不确定性故障的分析,提高了发动机故障诊断的精确性. 相似文献
8.
小波神经网络法在柴油机故障诊断中的应用 总被引:5,自引:1,他引:5
用小波分析作信号处理手段提取柴油机振声信号特征量 ,以神经网络作为故障模式识别手段 ,进行了柴油机故障的振声诊断方法研究。针对柴油机振声信号的非平稳时变特性 ,应用小波理论中的小波包方法对其进行处理 ,结果表明小波分析是比傅里叶分析更为有效的处理柴油机振声这类非平稳信号的方法。在此基础上 ,研究了用神经网络实现根据小波包分解结果识别柴油机故障状态的方法。 相似文献
9.
针对风力机齿轮箱振动响应信号具有强非线性及非平稳性的特点,考虑平均幅值对平均谱负熵时频域成分权重自适应调节,提出连续改进平均谱负熵方法(ICASN)以体现信号细节复杂度特征,并将ICASN引入经验小波变换(EWT),替代傅里叶谱作为频带划分依据。采用ICASN-EWT分解振动信号,基于改进平均谱负熵筛选特征分量,剔除信号冗余与噪声影响。分析各敏感分量分形特征并构建高维特征集,采用流形学习进行维数约简,并结合分形高斯噪声改进灰狼算法优化支持向量机关键参数,将降维后的向量集输入优化支持向量机进行故障识别与诊断,准确率高达100%。 相似文献
10.
小波分析技术在汽轮机故障诊断中的应用 总被引:3,自引:0,他引:3
就小波分析技术在汽轮机故障诊断中故障特征提取和小波算法的硬件实现问题进行了深入研究.提出了基于小波能量分布的故障特征提取方法,并在转子试验台上进行了验证.对于小波分析算法的硬件实现,设计了一种基于DSP的小波算法.实践检验证明,该方法能够满足振动信号实时分析的需要. 相似文献
11.
基于小波包的气门故障诊断 总被引:2,自引:0,他引:2
本文利用小波包将信号按任意时频分辨率(满足测不准原则)分解到不同频段的特点,论述了小波包特征提取的方法。利用这一特性对柴油机气门间隙和漏气故障进行了诊断,取得了满意的结果。 相似文献
12.
基于小波神经网络的旋转机械故障诊断 总被引:3,自引:1,他引:3
研究了小波变换与人工神经网络结合起来应用于旋转机械故障诊断的问题。通过选择合适的参数,对故障信号功率谱进行小波分解,简化了故障特征向量的提取。建立了基于小波变换和BP网络的混合诊断模型,成功地实现了对故障的智能诊断。 相似文献
13.
基于小波包与神经网络的柴油机故障诊断 总被引:1,自引:0,他引:1
针对柴油机缸盖振动信号的非平稳时变特点,提出应用小波包能量法提取故障特征向量,并将提取的特征向量作为BP神经网络的输入向量进行学习训练。训练后的神经网络可以利用测量的振动信号判断柴油机的气阀机构故障状况。实践证明该方法在柴油机振动诊断中是有效可行的,对其他设备的故障诊断也具有借鉴意义。 相似文献
14.
15.
16.
17.
18.
由非线性电力电子装置组成的风力机变频器一旦发生故障,其故障特征信息不容易被提取和识别。为此,提出了一种基于小波包分析和Elman神经网络的电力电子装置故障诊断的方法,先运用小波包分析法提取电力电子装置电路在不同故障状态下电压及电流信号的特征信息,然后对数据进行归一化处理并作为Elman神经网络的输入,由具有智能学习功能的神经元故障分类器完成故障识别和定位。以典型的风力机交—直—交变频器为例,在Matlab软件下建立电路模型对一次侧故障进行仿真实验,结果表明采用该方法可以快速、准确地完成故障诊断。 相似文献
19.
燃气轮机多元模糊神经网络诊断模型的研究 总被引:2,自引:0,他引:2
对基于热力参数的燃气轮机8种典型常用故障,提出了一种亲的适用于燃气轮机故障诊断的多元模糊神经网络模型。用具有代表性的故障样本训练该网络,就可以对不同大气温度,不同负荷下的常见故障进行诊断。 相似文献