首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The systematical studies of Zr-based BMGs were summarized in terms of their compositional design and their structural characterization. In particular, several key issues of BMG materials were focused, including initial alloy design and subsequent composition optimization, solidification microstructure characterization and crystallization process specification. The results show that a compositional designing approach is successfully developed and, through extensive microstructure characterization using transmission electron microscopy, several new crystalline phases are discovered in these newly developed Zr-based BMG alloys. Crystallization behavior ofZr-based BMG is also determined based on the microstructure analysis.  相似文献   

2.
A new series of Co80−xMoxP14B6 (x = 7, 9, and 11 at%) bulk glassy alloys were successfully prepared by a combination method of fluxing treatment and J-quenching technique. The glass-forming ability (GFA) of the obtained Co-based alloys is sensitive to the Mo content substituted for Co, and the maximum attainable diameter for a fully amorphous state can reach 4.5 mm at x = 9. The compressive tests show that the obtained Co-based BMGs exhibit a compressive strength of 3.3–3.9 GPa, but nearly zero compressive plasticity. The new Co-based BMGs possess good soft magnetic properties, and their saturated magnetization values decrease from 47 emu/g (0.45 T) to 14 emu/g (0.14 T) with increasing the content of the Co substitute from 7 at% to 11 at%, which may be attributed to the anti-ferromagnetic coupling between the Mo and Co atoms. Because of their good GFA, high Co content, few constituting elements, and relatively high strength, the obtained Co-based BMGs (especially Co71Mo9P14B6 BMG) can be considered promising as starting alloys to develop the new Co-based BMGs for the advanced structural and functional applications.  相似文献   

3.
A reference Zr57Cu20Al10Ni8Ti5 bulk metallic glass as well as a number of alloys obtained by addition of refractory elements Ta or W (combined with Sn) to the main Zr–Cu–Al–Ni system were elaborated by mould casting, twin roll casting and planar flow casting. The chemical compositions were chosen according to empirical rules, and as combinations of the binary eutectics for strongly interacting elements, taking into account the corresponding enthalpies of mixing. Optical microscopy, X-ray diffractometry, differential thermal analysis, differential scanning calorimetry, scanning electron microscopy and tensile mechanical testing were used to characterize the fully and partially obtained amorphous materials. Correlation of glass forming ability, thermodynamic parameters, crystallization behaviour and mechanical properties with chemical composition and production technology is discussed.  相似文献   

4.
This paper reports the discovery of novel copper-based bulk metallic glasses free of group IV transition metals (Zr, Hf and Ti) in the Ca–Cu–Mg ternary system. Alloys of compositions ranging from Cu-33–55 at.%, Mg-18–36 at.% and Ca-18–36 at.%, located far from eutectic reactions, were found to exhibit high glass-forming ability (up to 8 mm using conventional copper mold casting), high hardness (up to 328HV) and low densities (2.9–4.0 g/cm3).  相似文献   

5.
To investigate the effect of the volume fraction of the ex-situ reinforced Ta additions on the weldability of Zr–Cu–Ag–Al bulk metallic glass composites (BMGCs), in this study, different Ta contents (0–6 vol%) of BMGCs are welded using the Nd:YAG pulsed laser technique with preselected welding parameters. After welding, the microstructure (including the parent material (PM), weld fusion zone (WFZ) and heat-affected zone (HAZ)), mechanical and thermal properties of the test samples are investigated.The test results show, for all BMGC welds, the micro-sized Ta particles in the PM, WFZ and HAZ to be covered by a crystallized interfacial layer (IL), ZrCu. For both un-welded and laser-welded BMGCs, as the Ta contents increase, the glass transformation temperature (Tg) increases, which in turn reduces the glass formation ability (GFA) indices, ΔTx, γ and γm. However, when compared to that of un-welded BMGC, the GFA index, ΔTx, of the laser-welded BMGCs is slightly improved. However, the γ, and γm of the BMGC welds seem not to be affected.In addition, due to the characteristics of the rapid thermal cycle of the laser welding process, two smaller sizes of Ta, nano-sized (mainly on the surface of WFZ) and sub micro-sized Ta, are found in the WFZ. These sub-micro-sized Ta particles normally locate near the micro-sized Ta, which tends to slightly reduce the hardness in this area.Furthermore, an increase in the volume fraction of Ta (0–6 vol%) in the BMGCs does not encourage the formation of the harmful crystalline phase in the amorphous matrix after the laser welding process. It is observed that, other than the IL (ZrCu) on the micro-sized Ta particles, no other type of crystalline is observed in the amorphous matrix of the laser-welded BMGCs.  相似文献   

6.
It is known that bulk metallic glass compositions can be well interpreted by cluster formulas for stable liquids [cluster](glue atom)1 or 3, where the clusters are derived from relevant devitrification phases. In the present work, the glass forming composition formulas in Ni-Nb and Ni-Ta systems are fully examined. The procedures include choosing the appropriate eutectic crystalline phases, selecting the principal clusters via the criteria such as spherical periodicity and cluster isolation degree, and determining the glue atoms. After strictly following these procedures, the best glass forming compositions Ni62Nb38 in Ni-Nb system and the range 59–62 at.% Ni in Ni-Ta system are explained by formulas [Ni-Nb4Ni8]Nb2Ni and [M-Ni6Ta6]Ni3 (M is a random mixture of Ni and Ta) respectively.  相似文献   

7.
Ti_(47)Cu_(38-x)Zr_(7.5)Fe_(2.5)Sn_2Si_1Ag_2Nb_x (x=0, 1,2; at%) bulk metallic glasses (BMGs) with superior biocorrosion resistance were synthesized by copper mold casting. Although the minor addition of Nb to the Ti-CuZr-Fe-Sn-Si-Ag BMG slightly decreases the glass-forming ability (GF A), the Nb-bearing Ti-based alloys could be casted in a bulk glassy rod form with diameters up to3 mm. It is found that partial substitution of Cu with Nb is effective on enhancing the bio-corrosion resistance of the Ti-based BMG. Potentiodynamic polarization measurements show that Nb addition to Ti-based BMG leads to higher open-circuit potential and pitting potential as well as lower passive current density in Hank's solution. Electrochemical impedance spectroscopy (EIS) results indicate that with Nb content increasing, the charge transfer resistance values of the Ti-based BMGs become larger,demonstrating that the surface oxide films are more protective. The Nb-bearing Ti-based BMGs also exhibit good in vitro biocompatibility comparable to that of Ti-6Al-4V alloy. The enhanced bio-corrosion resistance, excellent in vitro biocompatibility and good mechanical properties of the Nb-bearing Ti-based BMGs are favorable for biomedical applications.  相似文献   

8.
Zr基大块非晶合金的微区变形及力学性能   总被引:1,自引:2,他引:1  
利用纳米压痕仪、扫描电镜等研究了Zr基大块非晶合金在纳米压痕条件下的变形及力学性能。Zr基大块非晶合金在纳米压头作用下以弹性-塑性方式变形,载荷-位移曲线及压痕周边多重剪切带(堆起或波纹状)的特征证明了塑性变形的存在。冷却速度、第二相及退火等因素影响非晶合金的压痕硬度HV和弹性模量E,冷却速度小的试样或部位(如试样中心)的HV,E值略高;离第二相(W丝)越近,HV,E值越高;退火处理提高非晶的HV,E值,同时退火与第二相还明显改变压痕周边的变形状态及塑性变形量的大小,退火显著减小塑性变形量,使压痕周边凹陷,而第二相使压痕堆起消失。对塑性变形机理进行了初步分析。  相似文献   

9.
Zr-based bulk metallic glasses (BMGs) with Nb minor alloying have been fabricated with different free volume (FV) trapped in. FV is evaluated by the relaxed excess free volume (REFV) after annealing just below Tg through loop thermal expansion tests. The results show that there is a qualitative correlation between the plasticity and REFV in Zr-based BMGs. The larger amount of excess FV the BMGs relax, the better plasticity they exhibit. With 1.5% Nb addition, the brittle Zr65Cu15Ni10Al10 BMGs possess REFV up to about 0.428% and exhibit the relatively good plasticity up to 25.6%. This provides a promising way to estimate the plasticity of BMGs and design new ductile BMGs through the minor alloying.  相似文献   

10.
Zr57Cu20Al10Ti8Ni5 and modified composition by adding Sn, W or Ta are studied using standard mechanical test and nanoindentation. Addition of refractory elements with a Sn micro-addition increases clearly the Young's modulus and the hardness of basic BMG. However, Sn reduces plasticity. Moreover these experiments allowed, in confine plasticity conditions, estimating an apparent activation volume associated to a plastic deformation (≈150 Å3).  相似文献   

11.
A various multicomponent bulk metallic glasses (BMGs) were prepared at a low cooling rates of 1–100 K/s. The effects of various additions on the glass forming ability (GFA), properties and thermal stability of the alloy systems were investigated. The structural and properties changes of the BMGs upon addition were studies using X-ray diffraction, differential scanning calorimetry, density measurement, and acoustic measurement. It is found that the proper elemental addition can significantly improve the GFA and properties of the bulk glass-forming alloys. The addition is an effective way for improving GFA, and properties of the bulky glass-forming alloys. The roles of the additions in the glass formation, properties and crystallization are discussed.  相似文献   

12.
Bulk metallic glasses (BMGs) with compositions of Gd55CoxAl45−x (15 ≤ x ≤ 30) and Gd60CoyAl40−y (15 ≤ y ≤ 30) were synthesized by an injection casting technique. Temperature dependence of magnetization of the BMGs indicates that their Curie temperatures can be tailored between 96 and 143 K by varying Gd and Co concentration. The magnetic entropy changes of the BMGs are greater than 9.0 J/kg K except for the Gd55Co30Al15 glass that exhibits a reduced magnetization due to its large Co content. The relative cooling powers of the BMGs are greater than those of any other crystalline compounds and decrease with the increasing Co content.  相似文献   

13.
全程真空压铸技术的快速发展为大块非晶合金的工业化应用提供了可能,受到了广泛关注。但是,非晶合金的室温脆性限制了压铸结构件在一些关键领域的应用。本论文利用压铸工艺高速充型及高压凝固的特性,通过在Vit1锆基非晶合金中引入304不锈钢网叠层焊接制造的骨架,成功制备出了不同体积分数晶态相增强的非晶复合材料,并系统研究了不锈钢网体积分数对力学性能的影响。研究结果表明,不锈钢网在非晶基体中均匀分布,与非晶合金存在冶金界面结合。力学性能测试显示,随着不锈钢编织网的引入,室温脆性的压铸Vit1块体金属玻璃的塑性得到了显著提升。随着不锈钢网目数增大(对应晶态相体积分数增大),非晶复合材料的塑性呈增大的趋势,但是,当目数超过200时,过细的孔洞会导致骨架局部区域无法填充,恶化性能。当晶态相的体积分数为53.7%时,断裂应变达到最大值,约为10%左右,其值高于传统不锈钢纤维增韧的Zr基非晶复合材料。韧化机制分析表明,压铸非晶合金出现脆-延性转变的根本原因是不锈钢网对剪切带扩展进行高效抑制,促进剪切带的增殖和萌生,减少宏观塑性变形的局域化。本研究为非晶复合材料的结构设计提供了新的思路,对于促进非晶合金的更广泛应用具有重要的工程价值。  相似文献   

14.
The effect of quasi-static compressive stress on the elastic moduli and mechanical properties of a Cu46Zr46Al8 bulk metallic glass (BMG) was investigated. When the applied quasi-static stress is below 2 GPa (equivalent to 1.4 times the yield strength of the BMG), the elastic moduli of the deformed BMGs are found to decrease with the applied stress, revealing the softening or dilatation of the bulk metallic glass. The Poisson ratio is relatively stable when the stress is below 1000 MPa, but it decreases significantly afterwards. Both the plasticity and strength of the BMG are found to increase at low applied stress, and achieve a maximum value before decreasing at higher applied stress. The applied stress is shown to enhance the mechanical properties of the BMG and the properties can be controlled by quasi-static compressive stress. The results demonstrate that an applied stress far below the macroscopic yield strength can still result in microscopic yielding and microstructure change in metallic glass systems.  相似文献   

15.
Our study investigates in-situ synthesis and mechanical properties of Zr-based bulk metallic glass (BMG) matrix composites via arc plasma-induced accelerated displacement reaction (APADR) process. The aluminum nitride precursor under arc plasma-induced ultra-high temperature results in higher contents of dissolved nitrogen as well as precipitation of zirconium nitride (ZrN) particles in a Zr-based amorphous matrix. The nitrogen in the matrix results in a decrease of crystallization resistance (lower Tx and reduced glass-forming ability), but an increase of mechanical stability (a decrease of strain burst sizes). In particular, in-situ formed ZrN, which exhibits a homogeneous distribution and strong interfacial bonding with the matrix, causes an increase in compressive fracture strength and significant plastic deformation in the composite compared with the monolithic BMG. The formation of multiple shear bands and the enhancement of shear band interactions by the dissolved nitrogen as well as the in-situ formed ZrN particles were carefully confirmed by a statistical analysis on serrated flows. These results give us a guideline on how to manipulate nitrogen contents and fabricate in-situ BMG matrix composites with improved mechanical properties via APADR process.  相似文献   

16.
The glass forming ability, thermal and mechanical properties of some ZrCuAlNi bulk metallic glasses were analyzed. The compositions of the alloys were theoretically determined with the dense packing and kinetic fragility index models. Cylindrical and conical ingots were produced by copper mould suction-casting under Ar atmosphere. The conical ingots were characterized by means of X-ray diffraction in order to determine the glassy structure. It was found that both alloys have a critical glassy diameter, Dc, of 3 mm. Thermal behaviours were investigated by differential scanning calorimetry at heating rates of 0.5, 0.67 and 0.83 K/s. The gamma parameter γ, supercooled liquid region ΔTx, and reduced glass transition temperature Trg, of the experimentally obtained glasses indicated high glass forming ability. The glassy compositions showed a fragility index of ~40 GPa. The compression test of the investigated alloys was carried out at a strain rate of 0.016 s?1, obtaining a elastic modulus of ~83 GPa, total deformation of ~5%, yield strength of 1.6 GPa and hardness of 4 GPa. It was concluded that the use of the dense packing and kinetic fragility index models helped to predict glass-forming compositions in the family alloy investigated.  相似文献   

17.
A bulk metallic glass (BMG) cylinder of Fe60Co8Zr10Mo5W2B15 with a diameter of 1.5 mm was prepared by copper mould casting of industrial raw materials. The amorphous state and the crystallization behavior were investigated by X-ray diffraction (XRD). The thermal stability parameters, such as glass transition temperature (Tg), crystallization temperature (Tx), supercooled liquid region (ΔTx) between Tg and Tx, and reduced glass transition temperature Trg (Tg/Tm) were measured by differential scanning calorimetry (DSC) to be 891, 950, 59 K, and 0.62, respectively. The crystallization process took place through a single stage, and involved crystallization of the phases -Fe, ZrFe2, Fe3B, MoB2, Mo2FeB2, and an unknown phase, as determined by X-ray analysis of the sample annealed for 1.5 ks at 1023 K, 50 K above the DSC peak temperature of crystallization. Mössbauer spectroscopy was studied for this alloy. The spectra exhibit a broadened and asymmetric doublet-like structure that indicated paramagnetic behavior and a fully amorphous structure. -Fe was found in the amorphous matrix for a cylinder with a diameter of 2.5 mm. The success of synthesis of the Fe-based bulk metallic glass from industrial materials is important for the future progress in research and practical application of new bulk metallic glasses.  相似文献   

18.
The electrochemical properties and surface characteristics of Cu–Zr–Ag–Al–Nb bulk metallic glasses (BMGs) were investigated. The alloys exhibit excellent corrosion resistance after immersion in 1N H2SO4 and 1N NaOH. The corrosion rates of the alloys in chloride-ion-containing solutions significantly decrease by alloying with Nb element. The formation of Zr- and Nb-enriched surface films could be responsible for the high corrosion resistance.  相似文献   

19.
The chip light emission and morphology, cutting forces, surface roughness, and tool wear in turning of Zr-based bulk metallic glass (BMG) material are investigated. Machining results are compared with those of aluminum 6061-T6 and AISI 304 stainless steel under the same cutting conditions. This study demonstrates that the high cutting speeds and tools with low thermal conductivity and rake angle activate the light emission and chip oxidation in BMG machining. For the BMG chip without light emission, serrated chip formation with adiabatic shear band and void formation is observed. The cutting force analysis further correlates the chip oxidation and specific cutting energy and shows the significant reduction of cutting forces for machining BMG at high cutting speeds. The machined surface of BMG has better surface roughness than that of the other two work materials. Some tool wear features, including the welding of chip to the tool tip and chipping of the polycrystalline cubic boron nitride (PCBN) tool edge, are reported for turning of BMG. This study concludes that BMG can be machined with good surface roughness using conventional cutting tools.  相似文献   

20.
Gd65Fe20Al15, Gd65Fe15Al20 and Gd70Fe15Al15 bulk amorphous alloys were produced by copper mold casting method with the maximum diameters of 2, 1 and 1 mm, respectively. The crystallization temperature (Tx) and melting temperature (Tm) of the Gd65Fe20Al15 bulk amorphous alloy are 808 and 943 K, respectively. Accordingly, the temperature interval of Tm and Tx, ΔTm (=Tm − Tx), is as small as 135 K and the reduced crystallization temperature (Tx/Tm) is as high as 0.86. The small ΔTm and high Tx/Tm values are presumed to be the origin for the achievement of the high amorphous-forming ability of the Gd–Fe–Al bulk amorphous alloy. The Gd65Fe20Al15, Gd65Fe15Al20 and Gd70Fe15Al15 bulk amorphous cylinders with a diameter of 1 mm exhibit superparamagnetism at room temperature, while the amorphous ribbon shows the paramagnetism at room temperature. Finally, the mechanical properties of Gd65Fe20Al15 bulk amorphous alloys are investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号