首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
To aim at pH environment in tumor tissue and light-controlled drug release, UV and pH dual-responsive supramolecular polymeric nanoparticles mediated by host-guest interactions of poly(α-cyclodextrin) and acetal-modified β-cyclodextrin-azobenzene were developed in this work. The host molecule was poly(α-cyclodextrin) and the guest molecule was composed of acetal-modified β-cyclodextrin with one azobenzene linked. The inclusion of α-cyclodextrin and azobenzene leaded to amphiphilic supramolecular polymer, which further self-assembled to form supramolecular polymeric nanoparticles in aqueous medium. UV and pH responsiveness of supramolecular polymeric nanoparticles attributed to azobenzene and acetal, respectively. Supramolecular polymeric nanoparticles based on poly(α-cyclodextrin) and acetal-modified β-cyclodextrin-azobenzene with the average diameter of sub-100 nm were controllable to release the drugs regulated by pH and UV.  相似文献   

2.
Several methods have been developed for synthesis of Ag nanoparticles. However, Ag nanoparticles are unstable materials, and they tend to agglomerate losing their properties. Polymers are commonly employed for the stabilization of Ag nanoparticles in colloidal solutions. Polymers with ionic groups such polyelectrolytes can stabilize metallic nanoparticles through electrostatic and steric effects. In this work we employed poly(p-acryloyloxybenzaldehyde) and their derivates containing arsonic acid groups in ortho and para positions as reducing and stabilizing agents in the synthesis of Ag nanoparticles. Polyelectrolytes containing arsonic acid groups in ortho position were better reducing agents than the poly(p-acryloyloxybenzaldehyde) and the polyelectrolyte with arsonic acid group in para position, leading to the reduction of Ag+ ions in short reaction time. The polyelectrolyte with arsonic acid groups in para position was the best stabilizing agent leading to obtaining Ag nanoparticles with the smallest average size.  相似文献   

3.
4.
Biofilms are complex bacterial communities have a mechanism for antibiotic resistance leading to human health problems. It remains challenging to treat and eradicate biofilms. In this work, the use of d-maltose synthesized silver nanoparticles (AgNPs) was investigated in an effort to eradicate a biofilm. AgNPs were synthesized using a modified Tollen’s method. d-maltose was used in synthesizing AgNPs with different concentrations of d-maltose (0.01, 0.05 and 0.1 M), referred to as NP1, NP2 and NP3, respectively. TEM images revealed that the particles were polygon shaped. The particle sizes were found to be 86.81?±?13.39, 54.94?±?11.63 and 31.43?±?31.76 nm depending on their sugar concentrations. UV–Vis, ATR–FTIR, and XRD patterns were employed to characterize the AgNPs. Then, these AgNPs were investigated for their anti-bacterial effects against Escherichia coli and Staphylococcus aureus. Evaluation of the minimum inhibitory concentration and minimal bactericidal concentration revealed that S. aureus was inhibited by all AgNPs and killed by NP1 and NP3, and E. coli was inhibited and killed at all AgNPs doses. Furthermore, anti-biofilm activity against these two bacteria was observed using SEM and confocal laser scanning microscopy. This sugar coated AgNPs is a promising material for use in eradication of biofilms.  相似文献   

5.
The specific and equivalent conductivity of the diluted aqueous solutions of diallyammonium polyelectrolytes, initial monomers (N,N-diallylammonium trifluoroacetate, N,N-diallyl-N-methylammonium trifluoroacetate, N,N-diallyl-N,N-dimethylammonium chloride), and also potassium trifluoroacetate and trifluoroacetic acid solutions are studied. The limiting ionic mobility of diallylammonium cations and trifluoroacetate anion are found. The regularities of concentration changes in the equivalent conductance of polyelectolytes solutions are established. The degree of dissociation of diallyammonium polymers is shown to depend both on the counterion nature and on the amine structure.  相似文献   

6.
Silver nanoparticles (AgNPs) were successfully synthesized from the reduction of Ag+ using AgNO3 solution as a precursor and Brassica rapa var. japonica leaf extract as a reducing and capping agent. This study was aimed at synthesis of AgNPs, exhibiting less toxicity with high antibacterial activity. The characterization of AgNPs was carried out using UV–Vis spectrometry, energy dispersive X-ray spectrometry, fourier transform infrared spectrometry, field emission scanning electron microscopy, X-ray diffraction, atomic absorption spectrometry, and transmission electron microscopy analyses. The analyses data revealed the successful synthesis of nano-crystalline Ag possessing more stability than commercial AgNPs. The cytotoxicity of Brassica AgNPs was compared with commercial AgNPs using in vitro PC12 cell model. Commercial AgNPs reduced cell viability to 23% (control 97%) and increased lactate dehydrogenase activity at a concentration of 3 ppm, whereas, Brassica AgNPs did not show any effects on both of the cytotoxicity parameters up to a concentration level of 10 ppm in PC12 cells. Moreover, Brassica AgNPs exhibited antibacterial activity in terms of zone of inhibition against E. coli (11.1?±?0.5 mm) and Enterobacter sp. (15?±?0.5 mm) which was higher than some previously reported green-synthesised AgNPs. Thus, this finding can be a matter of interest for the production and safe use of green-AgNPs in consumer products.  相似文献   

7.
A simple procedure is employed for the growth of silver nanoparticles (Ag NPs) onto the silicon substrate modified by poly(acrylic acid) (PAA) brushes, via: (1) surface-initiated ATRP of tert-butyl acrylate on Si surface to the preparation of poly(tert-butyl acrylate) brushes, (2) acid hydrolysis of PBA to the formation of PAA, and (3) in situ synthesis of Ag NPs via chemical reduction of AgNO3 in the presence of PAA brushes. The polymer brushes are thoroughly characterized. Moreover, Ag nanoparticles are homogeneously immobilized into the brush layer and have been used to fabricate a sensor platform of surface-enhance Raman scattering for the detection of organic molecules and effectively catalyze the reduction of methylene blue by NaBH4.  相似文献   

8.
Silver nanoparticles (AgNPs) was synthesized by using AgCl precursor with the stabilizing agent Cissus quadrangularis by precipitation method and the obtained particles were characterized by X-ray diffraction (XRD) analysis, Field Emission Scanning Electron Microscope (FESEM) and UV–Visible (UV–Vis) analysis. The influence of a stabilizing agent on AgNPs was compared with non-stabilized AgNPs through the experimental analysis. The XRD patterns show pure face center cubic structure for both samples, whereas the crystallite size is found to be low in stabilizer used samples. FESEM image and the UV–Vis spectra show less agglomeration and blue shift respectively, for stabilizer used AgNPs, indicating small size particles. Photoluminescence spectra show the emission band at 390 nm for both samples. Antibacterial tests show good activity against Pseudomonas aeruginosa for stabilizer used AgNPs. The study concluded that Cissus quadrangularis can be used as a potential stabilizing agent for preparing AgNPs from AgCl, for optical and biomedical applications.  相似文献   

9.
Functional polymer brushes of poly(acrylonitrile-g-N,N?-dimethylaminoethyl methacrylate) were efficiently synthesized by a novel approach of combining Cu(0)-mediated controlled/“living” radical polymerization and nitrile click chemistry. The poly(acrylonitrile-g-N,N?-dimethylaminoethyl methacrylate) as a promising material exhibited excellent hydrophile–lipohile balance in the process of self-assembly and could autonomously develop the orderly structure micelle in N,N?-dimethylformamide/water mixture solvent for the potential application of a new drug delivery carrier. In the process of self-assembly, polyacrylonitrile acted as a backbone of the functional polymer brushes due to its hydrophobic feature and poly(N,N?-dimethylaminoethyl methacrylate) as the branch of functional polymer brushes due to its hydrophilic characteristic, which both were prepared by Cu(0)-mediated controlled/“living” radical polymerization with ethyl-bromoisobutyrate as initiator. Poly(N,N?-dimethylaminoethyl methacrylate) containing azide end group was synthesized by substitution reaction of poly(N,N?-dimethylaminoethyl methacrylate) containing bromine end groups with sodium azide in N,N?-dimethylformamide. The click reaction between the nitrile of polyacrylonitrile and the azide group of poly(N,N?-dimethylaminoethyl methacrylate) was carried out under ammonium chloride as catalyst in N,N?-dimethylformamide. The polymer was further confirmed by GPC, FTIR, 1H NMR and TGA. Meanwhile, the micelles with different morphologies were observed by TEM, and the particle diameter distribution of self-assembled micelle from the PAN-g-PDMAEMA brushes was determined by DLS.  相似文献   

10.
Poly(ethylene glycol) (PEG), a polymer with excellent biocompatibility, was widely used to form nanoparticles for drug delivery applications. In this paper, based on PEG, a series of pH-sensitive amphiphilic block star polymers of poly(ethylene glycol)-block-poly(ethoxy ethyl glycidyl ether) (PEG-b-PEEGE) with different hydrophobic length were synthesized by living anionic ring-opening polymerization method. The products were characterized using 1H NMR and gel permeation chromatography. These copolymers could self-assemble in aqueous solution to form micellar structure with controlled morphologies. Transmission electron microscopy showed that the nanoparticles are spherical or rodlike with different hydrophilic mass fractions. The pH response of polymeric aggregates from PEG-b-PEEGE was detected by fluorescence probe technique at different pH. A pH-dependent release behavior was observed and pH-responsiveness of PEG-b-PEEGE was affected by the hydrophobic block length. These results demonstrated that star-shaped polymers (PEG-b-PEEGE) are attractive candidates as anticancer drug delivery carriers.  相似文献   

11.
This investigation reports the preparation and self-assembly behavior of polyhedral oligomeric silsesquioxane (POSS) containing poly(caprolactone)-graft-poly(acrylic acid) (POSS-PCL-graft-PAA) polymer. This article focuses on the self-assembly behavior of POSS tethered amphiphilic graft copolymer. In this investigation, POSS tethered alkyne functionalized polycaprolactone (PCL) was prepared by strategic ring opening polymerization (ROP) of ε-caprolactone and α-propargyl-ε-caprolactone using hydroxyl-terminated POSS as an initiator. Azide-terminated poly(tert-butyl acrylate) (P t BA) was grafted onto functional PCL via Cu-catalyzed azide-alkyne “click” (CuAAC) reaction. Finally, hydrolysis of the tert-butyl ester group into acid furnished the POSS tethered PCL-graft-PAA polymer. This amphiphilic graft copolymer was characterized by GPC, NMR, and FT-IR analyses and the morphology of the graft copolymer analyzed by HRTEM and FESEM analyses. On changing the graft copolymer concentration (low to high) in water, the morphology of the final graft copolymer changed from micelles to worm-like and core-shell. The structural motif of POSS plays an important role in this morphological transformation. The pH sensitivity was studied using DLS analysis as well as via release profile of rhodamine B as a model compound.  相似文献   

12.
The stability of anionic-cationic surfactant solutions and the antimicrobial properties of novel N,N-dimethyl-N-[3-(gluconamide/lactobionamide)]propyl-N-alkylammonium bromides (CnDGPB and CnDLPB), N-methyl-N-hydroxyethyl group-N-[3-(gluconamide)-propyl]-N-alkylammonium bromide (CnMHGPB) and star-shaped gluconamide-type cationic surfactants N-dodecyl-N,N-bis[(3-d-gluconylamido)propyl]-N-alkylammonium bromide (CnDBGB) were investigated. Mixed stability in combination with sodium n-alkylbenzenesulfonate (LAS) was determined via transmittance; stability is achieved when percent transmittance was greater than 90 %. Transmittance results suggest that these cationic surfactants can form stable solutions with anionic surfactants over a broad concentration range. The inhibition activity of C n DBGB is the best among the three kinds of glucocationic surfactants. Antimicrobial activity of C12 surfactants was the best, C14 was the second and C10 was the worst. Moreover, antibacterial activity of glucose-based cationic surfactants was greater than lactose-based cationic surfactants.  相似文献   

13.
Experimental studies were conducted to evaluate the thermal stability and rheological properties of novel surfactant–polymer (SP) systems for enhanced oil recovery applications. One in-house synthesized amphoteric amidosulfobetaine surfactant 3-(N-pentadecanamidopropyl-N,N-dimethylammonium)propanesulfonate and three different polymers were evaluated. Polymer A was a terpolymer of acrylamide, acrylamido tert-butyl sulfonate, and acrylic acid, whereas polymers B and C were terpolymers of acrylamide, N-vinylpyrrolidone, and acrylamido tert-butyl sulfonate with different anionicity. Long-term thermal stability of the surfactant was assessed using FTIR, 1H NMR, and 13C NMR. The surfactant was compatible with seawater at 90 °C and no precipitation was observed. Structural analysis showed good thermal stability and no structural changes were observed after aging at 90 °C. The effects of surfactant concentration, shear rate, salinity, and polymer concentration on rheological properties of the SP systems were determined. Polymer A showed highest viscosity among the investigated polymers in deionized and seawater. The interactions between the surfactant and polymer A were assessed using rheological measurements. In the presence of salts, the viscosity of all three polymers reduced significantly as a result of charge screening. At low shear rates, the added surfactant slightly decreased the viscosity and storage modulus of polymer A. At high shear rates, the effect of the surfactant on the viscosity and storage modulus of polymer A was insignificant.  相似文献   

14.
Mesoporous nickel oxide (NiO) nanoparticles were synthesized by the thermal decomposition reaction of Ni(NO3)2·9H2O using oxalic acid dihydrate as the mesoporous template reagent. The pore structure of nanocrystals could be controlled by the precursor to oxalic acid dihydrate molar ratio, thermal decomposition temperature and thermal decomposition time. The structural characteristic and textural properties of resultant nickel oxide nanocrytals were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), N2 adsorption–desorption isotherm and temperature programmed reduction. The results showed that the most excellently mesoporous nickel oxide particles (m-Ni-1-4) with developed wormlike pores were prepared under the conditions of the mixed equimolar precursor and oxalic acid and calcined for 4 h at 400 °C. The specific surface area and pore volume of m-Ni-1-4 are 236 m2 g?1 and 0.42 cm3 g?1, respectively. Over m-Ni-1-4 at space velocity = 20,000 mL g?1 h?1, the conversions of toluene and formaldehyde achieved 90 % at 242 and 160 °C, respectively. It is concluded that the reactant thermal decomposition with oxalic acid assist is a key step to improve the mesoporous quality of the nickel oxide materials, the developed mesoporous architecture, high surface area, low temperature reducibility and coexistence of multiple oxidation state nickel species for the excellent catalytic performance of m-Ni-1-4.  相似文献   

15.
The thermo-sensitive poly(amino acid)s have aroused great concern due to their good biocompatibility, chirality and multi-functional groups. In this investigation, a group of poly(L-lysine ester -co- N-propionyl-L-aspartic acid)s (PLPA) with excellent thermo-sensitivity and non-cytotoxicity have been successfully synthesized by the polycondensation between α/ε-amino groups of L-lysine and α/γ-carboxyls from L-aspartic acid. The structure and properties of PLPA including monomers are characterized by FTIR, 1H NMR, UV, DSC, GPC, SEM, Contact angle measurement, CCK-8 Cell Counting Kit assess and Confocal laser-scanning microscopy (CLSM). Among four designed PLPAs, only PLPAs possessing methyl/ethyl in the ester moiety show a reversible lower critical solution temperature (LCST) of 21.3–36.2 °C, very close to body temperature. The thermo-sensitivity of PLPAs is strongly affected by the polymer structure, its molecular weight and concentration. The contact angle measurement clearly reveals the effect of pendant groups and temperature on the hydrophlilicity/hydrophobicity of PLPAs. Furthermore, the viability of HeLa cells in 0.01–100 μg/mL PLPA solution is found to be in a range of 90–102% after 24, 48 and 72 h of incubation, indicating its no cytotoxicity. PLPA can facilely form a spherical nano-scale particle with core-shell structure via its thermo-sensitivity. CLSM observations manifest that the curcumin-loaded PLPA particles clearly internalize into the cellular inside. Overall, this noncytotoxic PLPA with excellent thermo-sensitivity is expected to be a promising material in the biomedical fields such as a hydrophobic drug carrier.  相似文献   

16.
Poly(N-isopropylmethacrylamide-co-methacrylic acid) [p(NipAam-Mac)] microgels were synthesized and used as microreactors to fabricate silver nanoparticles. Pure and hybrid microgels were characterized using Ultraviolet–Visible (UV/Vis) spectroscopy, Fourier transform infra-red (FTIR) spectroscopy and transmission electron microscopy (TEM). Catalytic activity of hybrid microgels and mechanism of catalysis by this system was explored using different reaction conditions. At the same temperature, apparent rate constant (kapp) was found to be varied from 0.0414 to 0.7852 min?1 by increasing the concentration of NaBH4 from 2.49 to 22.41 mM at constant concentration of substrate and catalyst. However upon extra increase in concentration of NaBH4 from 22.41 to 37.35 mM reduced the value of kapp to 0.2178 min?1. Likewise, the value of kapp was found to be increased from 0.1242 to 0.5495 min?1 with increasing the concentration of 4-nitrophenol [Para-nitrophenol (p-Np)] from 0.063 to 0.079 mM keeping other parameters constant. Further increase in concentration of p-Np caused decline in the value of kapp. Kinetic data reveals that catalytic reduction of p-Np obeys Langmuir–Hinshelwood mechanism and p-Np is converted to p-Ap on the surface of the silver nanoparticles passing through various reaction intermediates.  相似文献   

17.
Epoxy resin GY250 representing diglycidyl ethers of bisphenol-A (DGEBA) was reinforced with 1, 3 and 5wt % of surface functionalized silver nanoparticles (F-AgNPs) which were synthesized using Couroupita guianensis leaves extract with a view of augmenting the corrosion control property of the epoxy resin and also imparting antimicrobial activity to epoxy coatings on mild steel. Corrosion resistance of the coatings was evaluated by EIS, potentiodynamic polarization studies and cross scratch tests. AFM, SEM, HRTEM and EDX were utilized to investigate the surface topography, morphology and elemental composition of the coatings on MS specimens. Results showed that the corrosion resistance, hardness and Tg of the DGEBA/F-AgNPs coatings increased at 1wt % of F- AgNPs. The DGEBA/F-AgNPs coatings also offered manifold antimicrobial protection to the MS surfaces by inhibiting the growth of biofilm forming bacteria like P. aeruginosa, B. subtilis, the most common human pathogen E. coli and the most virulent human pathogenic yeast C. albicans.  相似文献   

18.
The surface of polypropylene (PP) fiber was modified by UV-induced graft polymerization of 1-vinylimidazole (Vim), followed by quaternization with iodomethane, sulfonation with chlorosulfonic acid, or loading of silver (Ag) nanoparticles to endow the surface with antibacterial properties. The modified PP fibers were characterized by FT-IR, SEM, and surface charge analyses. The antibacterial activity of the modified PP fibers was assessed against the Gram-negative and Gram-positive bacteria, Escherichia coli (E. coli), and Staphylococcus aureus (S. aureus), respectively. The PP-g-Vim was greatly improved by loading of Ag nanoparticles (≥99.9%), quaternization (98.9–99.2%), or sulfonation (≥99.9%).  相似文献   

19.
The objective of this study was to investigate the influence of molecular structure on impact resistance (a n) and bending strength (σ) of photocured urethane-dimethacrylate polymer networks. Urethane-dimethacrylate (UDMA) monomers were synthesized through reaction of oligoethylene glycol monomethacrylate (OEGMMA) with diisocyanate (DI). OEGMMA varied within the length of the oligooxyethylene chain, which consisted of one to four oxyethylene units. DI varied in chemical character: aliphatic, cycloaliphatic or aromatic. The molecular structure of UDMA polymers was characterized by X-ray powder diffraction, which allowed the calculation of the d-spacing (d) and dimensions of microgel agglomerates (D). The measurements of the polymerization shrinkage were used for the determination of the degree of conversion (DC), whereas the concentration of double bonds was used as a measure of the crosslink density (q). It was found that all structural parameters depend on the UDMA chemical structure. The increasing length of the oligooxyethylene chains caused the decrease in d and q, in contrast to the increase in D and DC. The DI chemical character caused the increase in the DC and q accordingly: symmetrical cycloaliphatic or aromatic < asymmetrical cycloaliphatic and aromatic < substituted aliphatic < linear aliphatic. The compact packing and high DC in polymers derived from aliphatic DIs gave rise to the decrease in d and the increase in D. The non-planar conformation of cycloaliphatic DIs emerged in high d as well as D. The planar conformation of aromatic DIs resulted in the decrease in d as well as D. The study indicated that mechanical behavior of UDMA polymer networks can be explained in terms of the structural parameters. DC and q appeared to be the main factors determining both mechanical properties of poly(UDMA)s. The a n was also shown to be affected by d. Particularly high linear correlations were found on a semi-logarithmic scale for the DC and d with a n. a n increased as the DC increased, whereas d decreased.  相似文献   

20.
In the present work, a Schiff base was obtained from reaction of 1-naphthylamine with salicylaldehyde and its polymer (poly(NIMP)) was synthesized via oxidative polycondensation. The characterizations of the synthesized Schiff base and poly(NIMP) were determined by 1H NMR, 13C NMR, FT-IR, GPC and TGA techniques. The film of synthesized poly(NIMP) was prepared. The film thickness was found to be 106 μm. The optical band gap (Eg) values of the film were determined by UV-vis spectroscopy. Direct, indirect and forbidden indirect band gap (Egd, Egid and Egfid) values of the film were found as 1.698, 1.223 and 1.461 eV, respectively. Surface properties of the film were investigated by Atomic force microscope (AFM). In the AFM results, the average surface roughness and average square root roughness were obtained as 2.46 and 3.79 nm, respectively. A negative skewness value exhibited dominant valleys while the high kurtosis value exhibited spiky features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号