首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this investigation, an attempt has been made to hardness and wear rate of Al7075 hybrid metal matrix composite reinforced with the hard ceramics like alumina (2, 4, and 6 wt.% of Al2O3) and silicon carbide (3, 6, and 9 wt.% of SiC) is fabricated by using stir casting method. The samples were aging at temperature of 140 °C, 160 °C and 180 °C and monitored by hardness test. Taguchi’s L27 Orthogonal array was used for optimizing the process parameters. The obtained results indicated that hardness increased with increasing reinforcement. A wear test was performed using pin-on disk apparatus at room temperature for constant load of 30N, at a fixed sliding speed of 1.66 m/s and wear resistance increased as the weight percentage of reinforcement increased. Scanning electron microscope (SEM) studies were carried out to evaluate the worn surface. From the analysis of variance (ANOVA), Al2O3 is the significant factor that affects the hardness and wear loss of hybrid composites followed by SiCp and heat treatment. Confirmatory test was performed for the optimized parameters and these results were within the acceptable range when compared with the experimental results.  相似文献   

2.
3.
Electrodeposition of Zn, Co and ZnCo from acid sulfate solutions onto steel was investigated in this first part of a study of the effects of SiC or Al2O3 particles on these processes and the formation of ZnCo–SiC and ZnCo–Al2O3 electrocomposites. Zn electrodeposition shows a well-defined pre-bulk region, where the hydrogen evolution reaction (HER) and Zn underpotential deposition (upd) compete. Zn bulk electrodeposition begins with primary nucleation and diffusion-controlled growth, strongly dependent on conditions favoring previous Zn upd against HER. It is assumed that this first bulk process takes place over the upd Zn. Zn bulk electrodeposition is followed by secondary nucleation and growth. Co electrodeposition begins with a slow reduction in parallel with HER, followed by a faster reduction. strongly hinders the initial reduction. The ZnCo and Zn electrodeposition curves are initially similar, retaining features of pre-bulk and bulk Zn electrodeposition.  相似文献   

4.
Details are given of the synthesis and testing of flux-cast refractory materials in the alumina-rich region of the Al2O3-MgO-B2O3 system; XRD and petrography indicate that the main structure-forming phases are corundum and magnesian spinel. In subordinate amounts there are the boroaluminate 9Al2O3·2B2O3 and the previously unknown compound 4Al2O3·MgO·2B2O3, whose composition has been established by microprobe analysis. Corrosion tests showed that three-component systems containing magnesium and boron oxides at levels of 5–10% do not increase the corrosion resistance of refractories in molten sodium-calcium-silicate glass and electrovacuum borosilicate glass. __________ Translated from Novye Ogneupory, No. 3, pp. 161–163, March, 2008.  相似文献   

5.
An Al2O3-ZrO2 xerogel (AZ-SG) was prepared by a sol-gel method for use as a support for a nickel catalyst. The Ni/AZ-SG catalyst was then prepared by an impregnation method, and was applied to hydrogen production by steam reforming of LNG. A nickel catalyst supported on commercial alumina (A-C) was also prepared (Ni/A-C) for comparison. The hydroxyl-rich surface of the AZ-SG support increased the dispersion of nickel species on the support during the calcination step. The formation of a surface nickel aluminate-like phase in the Ni/AZ-SG catalyst greatly enhanced the reducibility of the Ni/AZ-SG catalyst. The ZrO2 in the AZ-SG support increased the adsorption of steam onto the support and the subsequent spillover of steam from the support to the active nickel sites in the Ni/AZ-SG catalyst. Both the high surface area and the well-developed mesoporosity of the Ni/AZ-SG catalyst improved the gasification of adsorbed surface hydrocarbons in the reaction. In the steam reforming of LNG, the Ni/AZ-SG catalyst showed a better catalytic performance than the Ni/A-C catalyst. Moreover, the Ni/AZ-SG catalyst showed strong resistance toward catalyst deactivation.  相似文献   

6.
7.
The apparent density and compressive strength have been examined in relation to the amounts of electrocorundum, graphite, and silicon carbide in the initial material based on Al2O3–SiC–C composite with the introduction of alumochromium phosphate binder. The maximum apparent density is 2.96 g/cm3 and the compressive strength 60 MPa.  相似文献   

8.
Triply and doubly charged states of europium are revealed by 151Eu Mössbauer spectroscopy in the structure of glasses of the composition (mol %) 19.5Al2O3, 31.5SiO2, 26.5MnO, and 22.5Eu2O3. The isomer shifts in the Mössbauer spectra of Eu3+ and Eu2+ ions in the structure of glasses differ from the isomer shifts in the spectra of the Eu2O3 and EuO compounds. This difference is explained by the fact that the electron density at 151Eu nuclei is affected by the manganese and aluminum atoms, which are not bound directly to the europium atoms. The broadening of the spectra of the Eu2+ ions in glasses is caused by the nonuniform isomer shift.  相似文献   

9.
Synthetic spinels of the system MgO-Cr2O3-Al2O3-Fe2O3 are considered and the desirability of organizing their production for the refractory industry is demonstrated. Translated from Novye Ogneupory, No. 6, pp. 32–35, June 2008.  相似文献   

10.
This paper presents the direct synthesis of super-low SiO2/Al2O3 ratio zeolite beta molecular sieve through a novel route, by which some of aluminium species are added during crystaling process. The IR results show that with the increase of aluminium content in the framework, the frequency of the band in the range of framework vibration (1060–1090 cm−1) shifts to the lower wave-number; the BET surface-area decreases and the basicity of zeolite becomes stronger. In a second step, new adsorbents were obtained by solid-state ion exchanging zeolite beta with Cu(I), Ag(I) cations. The deep-desulfurization (sulfur levels of <1 ppmw) tests were performed using fixed-bed adsorption technique, the sulfur content of the treated and untreated gasoline was analyzed by microcoulometry. The experimental results show that the desulfurization performance of sorbents decreases in order: Cu(I)beta > Ag(I)beta > Na-beta. The best sorbent, Cu(I)beta, has breakthrough adsorption capacities of 0.236 mmolS/g of sorbent for model gasoline.  相似文献   

11.
The formation of Al2O3 + Fe nanocomposites (in the range 0–20 wt % Fe) in the course of three sequential processes, such as dispersion, compaction, and sintering at a temperature of 1573 K, is investigated. It is revealed that the sintering is accompanied by the formation of the spinel phase at interfaces. It is demonstrated that the composition of the sintered samples corresponds to an equilibrium composition at a temperature of approximately 1073 K and that the spinel phase serves as a barrier layer preventing oxidation of iron  相似文献   

12.
The phase composition and structure of fusion-cast refractories composed of 57.0 – 84.2% Cr2O3, 4.3 – 36.1% MgO, 2.0 – 9.7% Al2O3, and 2.4 – 6.9% SiO2 have been studied by petrographic and x-ray spectral microprobe analysis methods. Refractories high in MgO with modulus M = (Cr2O3 +Al2O3)/MgO = 1.64 – 3.1 are shown to consist of spinel phase Mg(Cr, Al)2O4 and silicate glass. Refractory materials (80.8 – 84.2% Cr2O3, 4.3 – 4.7% MgO, 2.0 – 9.7% Al2O3, and 2.7 – 6.9% SiO2 with M = 18.7 – 20.2) are three-phase systems composed of spinel, escolaite, and glass phase. These materials, owing to their high corrosion resistance, have promising potentiality for practical applications.__________Translated from Novye Ogneupory, No. 12, pp. 69 – 74, December, 2004.  相似文献   

13.
The crystal structure of Pb6O[(Si6Al2)O20)] is investigated using X-ray diffraction. The compound has tetragonal symmetry, space group I4/mmm, a = 11.7162(10) Å, c = 8.0435(12) Å, and V = 1104.13(2) Å3. The structure is refined to R 1 = 0.036 for 562 unique reflections with [F 0] ≥ 4σF. The structure contains two symmetrically independent positions of the Pb2+ cations coordinated by five O atoms (Pb2+-O2? = 2.34–2.68 Å). The TO4 tetrahedra (T = Si, Al) form tubular [(Si6Al2)O20] chains extended along the c axis. The O4 oxygen atom is not bonded to the Si and Al atoms and is octahedrally coordinated by six Pb atoms with the formation of an oxo-centered OPb6 octahedron. The assumption is made that, in some of lead silicate and aluminosilicate glasses, a number of oxygen atoms are located outside the tetrahedral structure and represent segregation centers of the Pb2+ cations due to the formation of oxo-centered complexes.  相似文献   

14.
The dispersion and stability of nanofluids obtained by dispersing Al2O3 nanoparticles in ethylene glycol have been analyzed at several concentrations up to 25% in mass fraction. The thermal conductivity and viscosity were experimentally determined at temperatures ranging from 283.15 K to 323.15 K using an apparatus based on the hot-wire method and a rotational viscometer, respectively. It has been found that both thermal conductivity and viscosity increase with the concentration of nanoparticles, whereas when the temperature increases the viscosity diminishes and the thermal conductivity rises. Measured enhancements on thermal conductivity (up to 19%) compare well with literature values when available. New viscosity experimental data yield values more than twice larger than the base fluid. The influence of particle size on viscosity has been also studied, finding large differences that must be taken into account for any practical application. These experimental results were compared with some theoretical models, as those of Maxwell-Hamilton and Crosser for thermal conductivity and Krieger and Dougherty for viscosity.  相似文献   

15.
An investigation on viscosity was conducted 2 weeks after the Al2O3-water nanofluids having dispersants were prepared at the volume concentration of 1-5%. The shear stress was observed with a non-Newtonian behavior. On further ultrasonic agitation treatment, the nanofluids resumed as a Newtonian fluids. The relative viscosity increases as the volume concentrations increases. At 5% volume concentration, an increment was about 60% in the re-ultrasonication nanofluids in comparison with the base fluid. The microstructure analysis indicates that a higher nanoparticle aggregation had been observed in the nanofluids before re-ultrasonication.  相似文献   

16.
The results of the modification of AG-OV-1 activated carbon under various conditions (by atmospheric oxygen at elevated temperatures and by hydrogen peroxide or ozone) are given. The effect of the used modifier on changes in the porosity, surface state, and adsorption capacity of activated carbon is evaluated.  相似文献   

17.
18.
Thin film optics, based on light interference characteristics, are attracting increasing interest because of their ability to enable a functional color coating for various applications in optical, electronic, and solar industries. Here, we report on the dependence of coloring characteristics on single-layer TiO2 thicknesses and alternating TiO2/Al2O3 multilayer structures prepared by atomic layer deposition (ALD) at a low growth temperature. The ALD TiO2 and Al2O3 thin films were studied at a low growth temperature of 80°C. Then, the coloring features in the single-layer TiO2 and alternating TiO2/Al2O3 multilayers using both the ALD processes were experimentally examined on a TiN/cut stainless steel sheet. The Essential Macleod software was used to estimate and compare the color coating results. The simulation results revealed that five different colors of the single TiO2 layers were shown experimentally, depending on the film thickness. For the purpose of highly uniform pink color coating, the film structures of TiO2/Al2O3 multilayers were designed in advance. It was experimentally demonstrated that the evaluated colors corresponded well with the simulated color spectrum results, exhibiting a uniform pink color with wide incident angles ranging from 0° to 75°. This article advances practical applications requiring highly uniform color coatings of surfaces in a variety of optical coating areas with complex topographical structures.  相似文献   

19.
A series of Al2O3 and CeO2 modified MgO sorbents was prepared and studied for CO2 sorption at moderate temperatures. The CO2 sorption capacity of MgO was enhanced with the addition of either Al2O3 or CeO2. Over Al2O3-MgO sorbents, the best capacity of 24.6 mg- CO2/g-sorbent was attained at 100 °C, which was 61% higher than that of MgO (15.3 mg-CO2/g-sorbent). The highest capacity of 35.3 mg-CO2/g-sorbent was obtained over the CeO2-MgO sorbents at the optimal temperature of 200 °C. Combining with the characterization results, we conclude that the promotion effect on CO2 sorption with the addition of Al2O3 and CeO2 can be attributed to the increased surface area with reduced MgO crystallite size. Moreover, the addition of CeO2 increased the basicity of MgO phase, resulting in more increase in the CO2 capacity than Al2O3 promoter. Both the Al2O3-MgO and CeO2-MgO sorbents exhibited better cyclic stability than MgO over the course of fifteen CO2 sorption-desorption cycles. Compared to Al2O3, CeO2 is more effective for promoting the CO2 capacity of MgO. To enhance the CO2 capacity of MgO sorbent, increasing the basicity is more effective than the increase in the surface area.
  相似文献   

20.
The maximization of the total surface area of Pt-SnO2/Al2O3 catalyst was studied by using the Taguchi method of experimental design. The catalysts were prepared by sol-gel method. The effects of HNO3, H2O and aluminum nitrate concentrations and the stirring rate on the total surface area were studied at three levels of each. L9 orthogonal array leading nine experiments was used in the experimental design. The parameter levels that give maximum total surface area were determined and experimentally verified. In the range of conditions studied it was found that, medium levels of HNO3 and H2O concentration and lower levels of aluminum nitrate concentration and stirring rate maximize the total surface area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号