首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we study asymptotic stability properties of risk-sensitive filters with respect to their initial conditions. In particular, we consider a linear time-invariant systems with initial conditions that are not necessarily Gaussian. We show that in the case of Gaussian initial conditions, the optimal risk-sensitive filter asymptotically converges to a suboptimal filter initialized with an incorrect covariance matrix for the initial state vector in the mean square sense provided the incorrect initializing value for the covariance matrix results in a risk-sensitive filter that is asymptotically stable, that is, results in a solution for a Riccati equation that is asymptotically stabilizing. For non-Gaussian initial conditions, we derive the expression for the risk-sensitive filter in terms of a finite number of parameters. Under a boundedness assumption satisfied by the fourth order absolute moment of the initial state variable and a slow growth condition satisfied by a certain Radon-Nikodym derivative, we show that a suboptimal risk-sensitive filter initialized with Gaussian initial conditions asymptotically approaches the optimal risk-sensitive filter for non-Gaussian initial conditions in the mean square sense. Some examples are also given to substantiate our claims.  相似文献   

2.
Blind inversion of a linear and instantaneous mixture of source signals is a problem often encountered in many signal processing applications. Efficient fastICA (EFICA) offers an asymptotically optimal solution to this problem when all of the sources obey a generalized Gaussian distribution, at most one of them is Gaussian, and each is independent and identically distributed (i.i.d.) in time. Likewise, weights-adjusted second-order blind identification (WASOBI) is asymptotically optimal when all the sources are Gaussian and can be modeled as autoregressive (AR) processes with distinct spectra. Nevertheless, real-life mixtures are likely to contain both Gaussian AR and non-Gaussian i.i.d. sources, rendering WASOBI and EFICA severely suboptimal. In this paper, we propose a novel scheme for combining the strengths of EFICA and WASOBI in order to deal with such hybrid mixtures. Simulations show that our approach outperforms competing algorithms designed for separating similar mixtures.  相似文献   

3.
The filtering problem for continuous‐time linear systems with unknown parameters is considered. A new suboptimal filter is herein proposed. It is based on the optimal mean‐square linear combination of the local Kalman filters. In contrast to the optimal weights, the suboptimal weights do not depend on current observations; thus, the proposed filter can easily be implemented in real‐time. Examples demonstrate high accuracy and efficiency of the suboptimal filter. Copyright © 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

4.
In this article, the problem of H filter design is investigated for discrete-time singular networked systems with both multiple stochastic time-varying communication delays and probabilistic missing measurements. Two kinds of stochastic time-varying communication delays, namely stochastic discrete delays and stochastic distributed delays, are simultaneously considered. The purpose of the addressed filtering problem is to design a filter such that, for the admissible random measurement missing and communication delays, the filtering error dynamics is asymptotically stable in the mean square with a prescribed H performance index. In terms of linear matrix inequality (LMI) method, a sufficient condition is established that ensures the asymptotical stability in the mean square with a prescribed H performance index of the filtering error dynamics and then the filter parameters are characterised by the solution to an LMI. A numerical example is introduced to demonstrate the effectiveness of the proposed design procedures.  相似文献   

5.
Ali  Anton A.  Peddapullaiah   《Automatica》2005,41(12):2115-2121
In this paper, the inputs are considered to be of two types. The first type of input, as in standard H2 optimal filtering, is a zero mean wide sense stationary white noise, while the second type is a linear combination of sinusoidal signals each of which has an unknown amplitude and phase but known frequency. The generalized H2 optimal filtering problem seeks to find a linear stable filter that estimates a desired output such that the H2 norm of the transfer matrix from the white noise input to the estimation error is minimized subject to the constraint that the mean of the error converges to zero for all initial conditions of the given system and filter and for all possible external sinusoidal signals. The analysis, design, and performance limitations of generalized H2 optimal filters are presented here.  相似文献   

6.
This paper investigates the reliable H filtering problem for a class of mixed time‐delay systems with stochastic nonlinearities and multiplicative noises. The mixed delays comprise both discrete time‐varying and distributed delays. The stochastic nonlinearities in the form of statistical means cover several well‐studied nonlinear functions. The multiplicative disturbances are in the form of a scalar Gaussian white noise with unit variance. Furthermore, the failures of sensors are quantified by a variable varying in a given interval. In the presence of mixed delays, stochastic nonlinearities, and multiplicative noises, sufficient conditions for the existence of a reliable H filter are derived, such that the filtering error dynamics is asymptotically mean‐square stable and also achieves a guaranteed H performance level. Then, a linear matrix inequality (LMI) approach for designing such a reliable H filter is presented. Finally, a numerical example is provided to illustrate the effectiveness of the developed theoretical results.  相似文献   

7.
We study a finite-horizon robust minimax filtering problem for time-varying discrete-time stochastic uncertain systems. The uncertainty in the system is characterized by a set of probability measures under which the stochastic noises, driving the system, are defined. The optimal minimax filter has been found by applying techniques of risk-sensitive LQG control. The structure and properties of resulting filter are analyzed and compared to H and Kalman filters.  相似文献   

8.
汪浩  姜顺  潘丰 《信息与控制》2019,48(5):595-602
针对基于Round-Robin通信协议网络化控制系统的鲁棒故障检测问题,考虑传感器饱和以及外部干扰,提出了一种通信协议约束下故障检测滤波器的设计方法.利用李亚谱诺夫稳定性理论和线性矩阵不等式技术得到故障检测滤波器存在的充分条件,通过求解具有凸约束的优化问题得到最优滤波器参数.所设计的故障检测滤波器不仅能够确保滤波误差系统均方渐进稳定且有较强的扰动抑制能力.通过数值仿真和DTS200三容水箱液体渗漏检测实验验证了该方法的有效性.  相似文献   

9.
Zidong  Yurong  Xiaohui 《Automatica》2008,44(5):1268-1277
In this paper, we deal with the robust H filtering problem for a class of uncertain nonlinear time-delay stochastic systems. The system under consideration contains parameter uncertainties, Itô-type stochastic disturbances, time-varying delays, as well as sector-bounded nonlinearities. We aim at designing a full-order filter such that, for all admissible uncertainties, nonlinearities and time delays, the dynamics of the filtering error is guaranteed to be robustly asymptotically stable in the mean square, while achieving the prescribed H disturbance rejection attenuation level. By using the Lyapunov stability theory and Itô’s differential rule, sufficient conditions are first established to ensure the existence of the desired filters, which are expressed in the form of a linear matrix inequality (LMI). Then, the explicit expression of the desired filter gains is also characterized. Finally, a numerical example is exploited to show the usefulness of the results derived.  相似文献   

10.
Discrete-time coupled algebraic Riccati equations that arise in quadratic optimal control and H -control of Markovian jump linear systems are considered. First, the equations that arise from the quadratic optimal control problem are studied. The matrix cost is only assumed to be hermitian. Conditions for the existence of the maximal hermitian solution are derived in terms of the concept of mean square stabilizability and a convex set not being empty. A connection with convex optimization is established, leading to a numerical algorithm. A necessary and sufficient condition for the existence of a stabilizing solution (in the mean square sense) is derived. Sufficient conditions in terms of the usual observability and detectability tests for linear systems are also obtained. Finally, the coupled algebraic Riccati equations that arise from the H -control of discrete-time Markovian jump linear systems are analyzed. An algorithm for deriving a stabilizing solution, if it exists, is obtained. These results generalize and unify several previous ones presented in the literature of discrete-time coupled Riccati equations of Markovian jump linear systems. Date received: November 14, 1996. Date revised: January 12, 1999.  相似文献   

11.
Whereas optimal prediction of Gaussian sequences requires the employment of a linear filter with consistently identifiable parameters and with Gaussian white noise input, the optimal predictor of non-Gaussian sequences is n nonlinear filter, having an independent noise input. Since the latter cannot be identified directly without prior knowledge of the non-linearity, the optimal linear predictor is usually identified where a non-Gaussian white noise input is considered and which is fully optimal only when that input turns out to be independent in all moments. However, if the non-Gaussian sequence is the outcome of a Gaussian sequence passed through a zero memory non-linearity or through non-linear measurement elements, a transformation of the non-Gaussian sequence into a Gaussian one is possible, such that optimal non-linear prediction may be approximated to any required degree, as is shown by the analysis of the present work. Furthermore, the parameters of that predictor may be consistently identified in the absence of any parameter information.  相似文献   

12.
This paper is concerned with the optimal state estimation for linear systems when the noises of different sensors are cross-correlated and also coupled with the system noise of the previous step. We derive the optimal linear estimation in a sequential form and for distributed fusion. They are both compared with the optimal batch fusion, suboptimal batch fusion, suboptimal sequential fusion, and the suboptimal distributed fusion where the cross-correlation between the noises are neglected. The comparison is in terms of theoretical filter mean square error and the real root mean square error. Simulation on a target tracking example is given to show the effectiveness of the presented algorithms.  相似文献   

13.
In this article, finite impulse response (FIR) control is addressed for H output feedback stabilisation of linear systems. The problem we deal with is the construction of an output feedback controller with a certain FIR structure such that the resulting closed-loop system is asymptotically stable and a prescribed H norm bound constraint is guaranteed. Some solvability conditions are suggested in this article. Sufficient conditions are derived to obtain a suboptimal solution of the H FIR control problem via convex optimisation. Also, an equivalent condition for the existence of H FIR control is presented in the set of linear matrix inequalities (LMIs) and a reciprocal matrices equality constraint. An effective computational algorithm involving LMIs is suggested to solve a concave minimisation problem characterising a local optimal solution of the H FIR control problem. Numerical examples demonstrate the validity of the proposed H FIR control and the numerical efficiency of the proposed algorithm for FIR control.  相似文献   

14.
This paper is devoted to the problem of robust L2L filtering for a class of stochastic systems with both discrete and distributed time‐varying delays. The objective is to design a full‐order filter such that the resulting filtering error system is stochastically asymptotically stable with a prescribed L2L performance satisfied. Delay‐dependent sufficient condition for the existence of the filter is obtained in terms of linear matrix inequalities (LMIs). And the filter design method is proposed, while the explicit expression for the desired filter is also given. Numerical examples are included to illustrate the benefit and the effectiveness of the proposed method. Copyright © 2011 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

15.
This paper considers a state estimation problem for a discrete-time linear system driven by a Gaussian random process. The second order statistics of the input process and state initial condition are uncertain. However, the probability that the state and input satisfy linear constraints during the estimation interval is known. A minimax estimation problem is formulated to determine an estimator that minimises the worst-case mean square error criterion, over the uncertain second order statistics, subject to the probability constraints. It is shown that a solution to this constrained state estimation problem is given by a Kalman filter for appropriately chosen input and initial condition models. These models are obtained from a finite dimensional convex optimisation problem. The application of this estimator to an aircraft tracking problem quantifies the improvement in estimation accuracy obtained from the inclusion of probability constraints in the minimax formulation.  相似文献   

16.
Optimal risk sensitive feedback controllers are now available for very general stochastic nonlinear plants and performance indices. They consist of nonlinear static feedback of so called information states from an information state filter. In general, these filters are linear, but infinite dimensional, and the information state feedback gains are derived from (doubly) infinite dimensional dynamic programming. The challenge is to achieve optimal finite dimensional controllers using finite dimensional calculations for practical implementation.This paper derives risk sensitive optimality results for finite-dimensional controllers. The controllers can be conveniently derived for ‘linearized’ (approximate) models (applied to nonlinear stochastic systems). Performance indices for which the controllers are optimal for the nonlinear plants are revealed. That is, inverse risk-sensitive optimal control results for nonlinear stochastic systems with finite dimensional linear controllers are generated. It is instructive to see from these results that as the nonlinear plants approach linearity, the risk sensitive finite dimensional controllers designed using linearized plant models and risk sensitive indices with quadratic cost kernels, are optimal for a risk sensitive cost index which approaches one with a quadratic cost kernel. Also even far from plant linearity, as the linearized model noise variance becomes suitably large, the index optimized is dominated by terms which can have an interesting and practical interpretation.Limiting versions of the results as the noise variances approach zero apply in a purely deterministic nonlinear H setting. Risk neutral and continuous-time results are summarized.More general indices than risk sensitive indices are introduced with the view to giving useful inverse optimal control results in non-Gaussian noise environments.  相似文献   

17.
The paper introduces the concept of mean square detectability and relates this to the recently introduced concept of mean square observability. It is shown that under appropriate mean square detectability and stabilizability conditions the infinite-horizon optimal control problem for the general case of linear discrete time systems and quadratic criteria, both with stochastic parameters which are statistically independent of time, has a unique solution when the control system is mean square stable. A simple necessary and sufficient condition, explicit in the system matrices, is given to determine if a system is mean square detectable. This condition also holds for deterministic systems to be detectable in the usual sense. The mean square detectability property coincides with the usual one if the parameters are deterministic.  相似文献   

18.

针对量测噪声模型为非高斯L´evy 噪声, 研究离散线性随机分数阶系统的卡尔曼滤波设计问题. 通过剔除极大值的方法得到近似高斯白噪声的L´evy 噪声, 基于最小二乘原理, 提出一种考虑非高斯L´evy 量测噪声下的改进分数阶卡尔曼滤波算法. 与传统的分数阶卡尔曼滤波相比, 改进的分数阶卡尔曼滤波对非高斯L´evy 噪声具有更好的滤波效果. 最后, 通过模拟仿真验证了所提出算法的正确性和有效性.

  相似文献   

19.
Chee Tsai  Ludwik Kurz 《Automatica》1983,19(3):279-288
The performance of a linear Kalman filter will degrade when the dynamic noise is not Gaussian. A robust Kalman filter based on the m-interval polynomial approximation (MIPA) method for unknown non-Gaussian noise is proposed. Two situations are considered: (a) the state is Gaussian and the observation noise is non-Gaussian; (b) the state is non-Gaussian and the observation noise is Gaussian. It is shown, as compared with other non-Gaussian filters, the MIPA Kalman filter is computationally feasible, unbiased, more efficient and robust. For the scalar model, Monte Carlo simulations are given to demonstrate the ideas involved.  相似文献   

20.
We consider LTI systems perturbed by parametric uncertainties, modeled as white noise disturbances. We show how to maximize, via state-feedback control, the smallest norm of the noise intensity vector producing instability in the mean square sense, using convex optimization over linear matrix inequalities. We also show how to maximize performance robustness, where performance is measured by expected output energy, with either bounded initial conditions and zero inputs (classical LQG cost), or zero initial conditions and deterministic inputs of bounded energy (a generalization of the H norm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号