首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Design and Evaluation of Multichannel Multirate Wireless Networks   总被引:1,自引:0,他引:1  
In a multirate wireless network, low data rate nodes consume proportionately more channel resources than high data rate nodes, resulting in low overall network performance. The use of multiple non-overlapping frequency channels in multirate wireless networks can overcome the performance degradation by having nodes communicate on different channels based on their data rates. However, no effort has been invested to utilize the multiple channels for a multirate wireless network. In this paper, we introduce the Data Rate Adaptive Channel Assignment (DR-CA) algorithm for a multichannel multirate single-hop wireless network to provide higher network throughput and network efficiency. The main idea is to assign links having same or comparable data rates on the same channel to minimize the wastage of channel resources due to interference between high data links and low data rate links. We also design a new Intermediary Multichannel Layer (IML) which resides between network layer and link layer, at which we implement the DR-CA algorithm. The IML design requires no modifications to the underlying MAC layer and upper layers of the network stack. To evaluate the proposed algorithm we define new performance metrics—channel efficiency and network efficiency for a multichannel multirate wireless network. Using OPNET simulations, we show that the multichannel enhancement using our proposed algorithm provides significant performance improvement in terms of network throughput, channel efficiency, and network efficiency over existing approaches in multirate wireless networks. Under heavy load condition, the network efficiency using DR-CA algorithm reaches 90% of the maximum limit. To the best of our knowledge, this is the first work to utilize the benefits of multiple channels in the multirate wireless network environment.  相似文献   

2.
We address the problem of routing connection-oriented traffic in wireless ad-hoc networks with energy efficiency. We outline the trade-offs that arise by the flexibility of wireless nodes to transmit at different power levels and define a framework for formulating the problem of session routing from the perspective of energy expenditure. A set of heuristics are developed for determining end-to-end unicast paths with sufficient bandwidth and transceiver resources, in which nodes use local information in order to select their transmission power and bandwidth allocation. We propose a set of metrics that associate each link transmission with a cost and consider both the cases of plentiful and limited bandwidth resources, the latter jointly with a set of channel allocation algorithms. Performance is measured through call blocking probability and average energy consumption and our detailed simulation model is used to evaluate the algorithms for a variety of networks.  相似文献   

3.
Recently, multi‐radio mesh technology in wireless networks has been under extensive research. This is because of its potential of overcoming the inherent wireless multi‐hop throughput, scalability and latency problems caused by the half‐duplex nature of the IEEE 802.11. The concept of deploying multiple radios in wireless network access points (APs) has shown a promising way to enhance the channel selection and the route formation while the MESH topology allows more fine‐grained interference management and topology control. Within this realm, given a set of end‐to‐end objectives, there are multiple issues that need to be identified when we consider the optimization problem for fixed multi‐channel multi‐hop wireless networks with multiple radios. This paper addresses the static channel assignment problem for multichannel multi‐radio static wireless mesh networks. We first discuss its similarities and differences with the channel assignment problem in cellular networks (WMN). Next, we present four metrics based on which mesh channel assignments can be obtained. Three of these metrics attempt to maximize simultaneous transmissions in a mesh network, either directly or indirectly. The fourth metric quantifies the ‘diversity’ of a particular assignment and can be used as a secondary criterion to the other three metrics. Related optimization models have also been developed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
Channel allocation was extensively investigated in the framework of cellular networks, but it was rarely studied in the wireless ad hoc networks, especially in the multihop networks. In this paper, we study the competitive multiradio multichannel allocation problem in multihop wireless networks in detail. We first analyze that the static noncooperative game and Nash equilibrium (NE) channel allocation scheme are not suitable for the multihop wireless networks. Thus, we model the channel allocation problem as a hybrid game involving both cooperative game and noncooperative game. Within a communication session, it is cooperative; and among sessions, it is noncooperative. We propose the min-max coalition-proof Nash equilibrium (MMCPNE) channel allocation scheme in the game, which aims to maximize the achieved data rates of communication sessions. We analyze the existence of MMCPNE and prove the necessary conditions for MMCPNE. Furthermore, we propose several algorithms that enable the selfish players to converge to MMCPNE. Simulation results show that MMCPNE outperforms NE and coalition-proof Nash equilibrium (CPNE) schemes in terms of the achieved data rates of multihop sessions and the throughput of whole networks due to cooperation gain.  相似文献   

5.
Cooperative Communications in Resource-Constrained Wireless Networks   总被引:2,自引:0,他引:2  
Cooperative communications have been proposed to exploit the spatial diversity gains inherent in multiuser wireless systems without the need of multiple antennas at each node. This is achieved by having the users relay each others messages and thus forming multiple transmission paths to the destination. In resource constrained networks, such as wireless sensor networks, the advantages of cooperation can be further exploited by optimally allocating the energy and bandwidth resources among users based on the available channel state information (CSI) at each node. In the first part of this article, we provide a tutorial survey on various power allocation strategies for cooperative networks based on different cooperation strategies, optimizing criteria, and CSI assumptions. In the second part, we identify the similarities between cooperative networks and several sensor network applications that utilize collaboration among distributed sensors to achieve the system goal. These applications include decentralized detection/estimation and data gathering. The techniques developed in cooperative communications can be used to solve many sensor network problems  相似文献   

6.
Light-trail, a framework proposed in the past few years, is generalized from the concept of lightpath, and its distinguishing features include bandwidth sharing and efficient bandwidth utilization. Performance of light-trail networks depends on the routing algorithm and the dynamic bandwidth allocation (DBA) scheme, and the former issue has been discussed extensively. In this work, we aim at the design of an efficient DBA scheme, named Demand and Delay-latency Aware with Two-round Deliberation \((\hbox {D}^{2}\hbox {ATD})\), to allocate bandwidth more accurately and efficiently in light-trail networks. In addition to DBA issue, \(\hbox {D}^{2}\hbox {ATD}\) includes a light-trail setup/release mechanism as well. As expected, the simulation results reveal superiority of \(\hbox {D}^{2}\hbox {ATD}\) in both blocking performance and delay performance. Although \(\hbox {D}^{2}\hbox {ATD}\) pays a price of control overhead for performance gain, it is still reasonable since the amount of control messages does not exceed the capacity of the control channel. It verifies that \(\hbox {D}^{2}\hbox {ATD}\) can properly employ the control channel to achieve excellent performance.  相似文献   

7.
Single-channel based wireless networks have limited bandwidth and throughput and the bandwidth utilization decreases with increased number of users. To mitigate this problem, simultaneous transmission on multiple channels is considered as an option. In this paper, we propose a distributed dynamic channel allocation scheme using adaptive learning automata for wireless networks whose nodes are equipped with single-radio interfaces. The proposed scheme, Adaptive Pursuit learning automata runs periodically on the nodes, and adaptively finds the suitable channel allocation in order to attain a desired performance. A novel performance index, which takes into account the throughput and the energy consumption, is considered. The proposed learning scheme adapts the probabilities of selecting each channel as a function of the error in the performance index at each step. The extensive simulation results in static and mobile environments provide that the proposed channel allocation schemes in the multiple channel wireless networks significantly improves the throughput, drop rate, energy consumption per packet and fairness index—compared to the 802.11 single-channel, and 802.11 with randomly allocated multiple channels. Also, it was demonstrated that the Adaptive Pursuit Reward-Only (PRO) scheme guarantees updating the probability of the channel selection for all the links—even the links whose current channel allocations do not provide a satisfactory performance—thereby reducing the frequent channel switching of the links that cannot achieve the desired performance.  相似文献   

8.
Mobile ad hoc networks (MANETs) are dynamic wireless networks that have no fixed infrastructures and do not require predefined configurations. In this infrastructure-less paradigm, nodes in addition of being hosts, they also act as relays and forward data packets for other nodes in the network. Due to limited resources in MANETs such as bandwidth and power, the performance of the routing protocol plays a significant role. A routing protocol in MATET should not introduce excessive control messages to the network in order to save network bandwidth and nodes power. In this paper, we propose a probabilistic approach based on Bayesian inference to enable efficient routing in MANETs. Nodes in the proposed approach utilize the broadcast nature of the wireless channel to observe the network topology by overhearing wireless transmissions at neighboring nodes in a distributed manner, and learn from these observations when taking packet forwarding decision on the IP network layer. Our simulation results show that our routing approach reduces the number of control message (routing overhead) by a ratio up to 20 % when the network size is 60 nodes, while maintaining similar average route establishment delay as compared to the ad-hoc on demand routing protocol.  相似文献   

9.
Node cooperation is an emerging and powerful solution that can overcome the limitation of wireless systems as well as improve the capacity of the next generation wireless networks. By forming a virtual antenna array, node cooperation can achieve high antenna and diversity gains by using several partners to relay the transmitted signals. There has been a lot of work on improving the link performance in cooperative networks by using advanced signal processing or power allocation methods among a single source node and its relays. However, the resource allocation among multiple nodes has not received much attention yet. In this paper, we present a unified crosslayer framework for resource allocation in cooperative networks, which considers the physical and network layers jointly and can be applied for any cooperative transmission scheme. It is found that the fairness and energy constraint cannot be satisfied simultaneously if each node uses a fixed set of relays. To solve this problem, a multi-state cooperation methodology is proposed, where the energy is allocated among the nodes state-by-state via a geometric and network decomposition approach. Given the energy allocation, the duration of each state is then optimized so as to maximize the nodes utility. Numerical results will compare the performance of cooperative networks with and without resource allocation for cooperative beamforming and selection relaying. It is shown that without resource allocation, cooperation will result in a poor lifetime of the heavily-used nodes. In contrast, the proposed framework will not only guarantee fairness, but will also provide significant throughput and diversity gain over conventional cooperation schemes.  相似文献   

10.
Spectrum sharing is one of the most important stages in cognitive radio wireless networks, responsible for the opportunistic allocation of free channels to unlicensed users (SUs) to be utilized in data transmission. One of the critical issues at this stage, is related to the absence of a module capable of allocating the available resources fairly to all network users. In this sense, the paper develops a media access control protocol (MAC) for cognitive networks based on infrastructure called CRUD-MAC, which allows to take advantage of channel access in a more equitable and efficient way; for this purpose two algorithms we designed within the MAC standard (using ANFIS and FAHP) for the ranking or classification of SUs by score when assigned channels based on network usage historical metrics, so that nodes with better ranking have priority in the allocation. Validation of the proposals was made by comparing the performance of CRUD-MAC with ANFIS, FAHP, and a channel assignment algorithm, not including ranking. The results show that the system is more efficient from the standpoint of fair allocation of resources.  相似文献   

11.
Ad hoc网络是一种没有固定基础设施,由多个带有无线收发装置的移动终端组成的多跳临时性自治系统。它独特的个性决定了各数据流之间要竞争共享的有限带宽资源。因此,为了保证Ad hoc网络业务的服务质量,合理的带宽分配机制至关重要。介绍了无线Ad hoc网络的网络模型,对带宽分配机制的定义及约束条件进行描述分析,然后从公平的角度详细地分析了目前Ad hoc网络的带宽分配机制,并总结了各种分配机制的优缺点。  相似文献   

12.
Bandwidth allocation schemes have been well studied for mobile cellular networks. However, there is no study about this aspect reported for IEEE 802.11 contention-based distributed wireless LANs. In cellular networks, bandwidth is deterministic in terms of the number of channels by frequency division, time division, or code division. On the contrary, bandwidth allocation in contention- based distributed wireless LANs is extremely challenging due to its contention-based nature, packet-based network, and the most important aspect: only one channel is available, competed for by an unknown number of stations. As a consequence, guaranteeing bandwidth and allocating bandwidth are both challenging issues. In this paper, we address these difficult issues. We propose and study nine bandwidth allocation schemes, called sharing schemes, with guaranteed Quality of Service (QoS) for integrated voice/video/data traffic in IEEE 802.11e contention-based distributed wireless LANs. A guard period is proposed to prevent bandwidth allocation from overprovisioning and is for best-effort data traffic. Our study and analysis show that the guard period is a key concept for QoS guarantees in a contention-based channel. The proposed schemes are compared and evaluated via extensive simulations.  相似文献   

13.
基于QoS的Ad Hoc路由协议综述   总被引:1,自引:1,他引:0  
Ad Hoc网络是由一组带有无线收发装置的移动终端组成的一个多跳的临时性自治系统。随着人们对通信业务要求的不断提高,对带宽、时延、误码率等性能参数提出了不同程度的保障要求,因此要求Ad Hoc网络能够为某些业务提供服务质量(QoS)保障。但由于Ad Hoc网络无线链路的时变特性、网络拓扑结构的动态变化、移动终端设备电池容量受限等特点,使其相对于固定无线网络及有线网络提供有保证且稳定的QoS保障要困难得多,非常具有挑战性。本文对目前几种基于带宽和时延约束的QoS路由协议进行了介绍。  相似文献   

14.
Mobile multimedia applications have recently generated much interest in mobile ad hoc networks (MANETs) supporting quality-of-service (QoS) communications. Multiple non-interfering channels are available in 802.11 and 802.15 based wireless networks. Capacity of such channels can be combined to achieve higher QoS performance than for single channel networks. The capacity of MANETs can be substantially increased by equipping each network node with multiple interfaces that can operate on multiple non-overlapping channels. However, new scheduling, channel assignment, and routing protocols are required to utilize the increased bandwidth in multichannel MANETs. In this paper, we propose an on-demand routing protocol M-QoS-AODV in multichannel MANETs that incorporates a distributed channel assignment scheme and routing discovery process to support multimedia communication and to satisfy QoS bandwidth requirement. The proposed channel assignment scheme can efficiently express the channel usage and interference information within a certain range, which reduces interference and enhances channel reuse rate. This cross-layer design approach can significantly improve the performance of multichannel MANETs over existing routing algorithms. Simulation results show that the proposed M-QoS-AODV protocol can effectively increase throughput and reduce delay, as compared to AODV and M-AODV-R protocols.  相似文献   

15.
Interference is a fundamental issue in wireless mesh networks (WMNs) and it seriously affects the network performance. In this paper we characterize the power interference in IEEE 802.11 CSMA/CA based wireless mesh networks using directional antennas. A model based centralized call admission control (CAC) scheme is proposed which uses physical collision constraints, and transmitter-side, receiver-side and when-idle protocol collision prevention constraints. The CAC assists to manage requests from users depending on the available bandwidth in the network: when a new virtual link establishment request from a user is accepted into the network, resources such as interface, bandwidth, transmission power and channel are allocated in the participating nodes and released once the session is completed. The proposed CAC is also able to contain the interference in the WMN by managing the transmission power of nodes.  相似文献   

16.
Recent advances in body area network technologies such as radio frequency identification and ham radio, to name a few, have introduced a huge gap between the use of current wireless sensor network technologies and specific needs of some important wireless sensor network applications such as medical care, disaster relief, or emergency preparedness and response. In these types of applications, the mobility of nodes can occur, leading to the challenge of mobility handling. In this paper, we address this challenge by prioritizing transmissions of mobile nodes over static nodes. This is achieved by using shorter contention windows in reservation slots for mobile nodes (the so‐called backoff technique) combined with a novel hybrid medium access control (MAC) protocol (the so‐called versatile MAC). The proposed protocol advocates channel reuse for bandwidth efficiency and management purpose. Through extensive simulations, our protocol is compared with other MAC alternatives such as time division multiple access and IEEE 802.11 with request to send/clear to send exchange, chosen as benchmarks. The performance metrics used are bandwidth utilization, fairness of medium access, and energy consumption. The superiority of versatile MAC against the studied benchmark protocols is established with respect to these metrics. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
On Routing in Multichannel Wireless Mesh Networks: Challenges and Solutions   总被引:4,自引:0,他引:4  
Wireless mesh networks have emerged as a promising solution to providing cost-effective last-mile connectivity. Employing multiple channels is shown to be an effective approach to overcoming the problem of capacity degradation in multihop wireless networks. However, existing routing schemes that are designed for single-channel multihop wireless networks may lead to inefficient routing paths in multichannel WMNs. To fully exploit the capacity gain due to multiple channels, one must consider the availability of multiple channels and distribute traffic load among channels as well as among nodes in routing algorithms. In this article we focus on the routing problem in multichannel WMNs. We highlight the challenges in designing routing algorithms for multichannel WMNs and examine existing routing metrics that are designed for multichannel WMNs, along with a simulation-based performance study. We also address some open research issues related to routing in multichannel WMNs.  相似文献   

18.
Next-generation wireless mobile communications will be driven by converged networks that integrate disparate technologies and services. The wireless mesh network is envisaged to be one of the key components in the converged networks of the future, providing flexible high- bandwidth wireless backhaul over large geographical areas. While single radio mesh nodes operating on a single channel suffer from capacity constraints, equipping mesh routers with multiple radios using multiple nonoverlap- ping channels can significantly alleviate the capacity problem and increase the aggregate bandwidth available to the network. However, the assignment of channels to the radio interfaces poses significant challenges. The goal of channel assignment algorithms in multiradio mesh networks is to minimize interference while improving the aggregate network capacity and maintaining the connectivity of the network. In this article we examine the unique constraints of channel assignment in wireless mesh networks and identify the key factors governing assignment schemes, with particular reference to interference, traffic patterns, and multipath connectivity. After presenting a taxonomy of existing channel assignment algorithms for WMNs, we describe a new channel assignment scheme called MesTiC, which incorporates the mesh traffic pattern together with connectivity issues in order to minimize interference in multi- radio mesh networks.  相似文献   

19.
对于无线多跳网络跨层资源分配算法的研究大多是建立在假定每个节点能获得网络中其他节点的完美的信道状态信息(CSI)的基础上。但是由于信道的时变特性和CSI的反馈延时,在动态变化较快的无线网络中,节点所获得的CSI很可能是过时或者部分过时的。基于这个前提,该文首次在动态无线多跳网络跨层资源优化分配算法中考虑了CSI这种变化的影响,并提出了一种相应的分布式联合拥塞控制和功率分配算法。仿真结果证明该算法能够极大地提高网络效用和能量效用。  相似文献   

20.
A special frequency scale is proposed for use in describing the fundamental limitation on wide-band matching of a small antenna by means of a fixed reactive network. This scale isu = - 1/omega^{3}, normalized to unit frequency (omega_{1} = 1)-It has unit width for the high-pass band above this frequency. In terms of the familiar matching exponentmu = ln 1/|rho|, the matching area over this scale is limited to3 pi p_{1}, whereP_{1}is the (small) radiation power factor atomega_{1}. The corresponding limit on matching efficiency is6 pi p_{1}. A double-tuned matching network can approach2/pithis area over any bandwidth on this scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号