首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
尹丰  陶向阳 《激光技术》2011,35(3):384-387
为了研究激光电磁场对真空中电子的作用,从洛伦兹方程出发,得出了电子运动轨迹,实现了激光场对电子的加速。继而由运动电子产生的流密度,得到了电子的辐射能量谱,分析了相对论电子的辐射特点。结果表明,高斯激光场对真空中电子有很好的加速效果,最大轴向速度可达0.9c。  相似文献   

2.
为了研究在激光驱动的等离子体尾场中被加速电子的动力学,采用数值模拟方法得到了非对称脉冲驱动的尾波场中被加速的电子的运动相图、密度分布及势能。结果表明,非对称激光脉冲驱动尾场中电子得到很高的能量。在非对称激光脉冲驱动的激光尾场中,为了有效地加速电子,要选择恰当的上升激光脉冲长度和下降激光脉冲长度。  相似文献   

3.
激光等离子体尾波加速是一种重要的电子加速机制,其加速梯度可达到100 GeV/m.但如果不加以控制,则加速距离被限制在一个瑞利距离以内.而预等离子体通道的引入,使得加速距离可大大加长,目前已经可以在厘米尺度内获得吉电子伏特的高能电子.这将有助于得到更小的高能物理实验装置以及超亮的自由电子激光器.  相似文献   

4.
受益于超短超强激光技术的持续迅猛发展,飞秒强激光为人类提供了全新的实验手段与极端的物理条件,使激光物质相互作用进入到一个极端非线性的强场超快新范畴,催生了大量新原理、新现象,推动了技术变革。飞秒强激光驱动的等离子体尾波场加速原理是一种具有超高加速梯度的粒子加速新原理,该技术的加速梯度可达100 GV/m,相比于传统射频加速器提高了3个数量级以上,可在厘米量级的加速长度内获得GeV量级的高品质高能电子束,极大地降低了加速器的成本,为发展新一代粒子加速技术和新型超快辐射源提供了新机遇和新途径。从飞秒强激光驱动等离子体尾波场中的电子注入、能量啁啾控制和高品质电子束产生以及基于高品质电子束的betatron X射线辐射、高能伽马射线和小型化自由电子激光这几个方面介绍了激光等离子体尾波场电子加速的若干主要研究进展,并对未来进行了展望。  相似文献   

5.
为了研究在激光驱动的尾场中被加速电子的动能,采用粒子模拟方法,得到了决定电子最大动能的尾场势的最大值和最小值,讨论了等离子体尾波静电势的最大值和最小值及其与激光脉冲长度和强度之间的关系。结果表明,捕获电子最大能量与脉冲激光强度成正比,激光脉冲长度是激光波长的10倍时电子获得的能量最大。  相似文献   

6.
将一束峰值功率为大瓦级的激光聚焦射入气体喷口,会产生电子等离子波。由于拉曼前向散射作用,可将电子加速相当高的速度。在一定条件下,电子束中央会出现一个空洞,这表明其中等离子体的电子有可能被排斥出。同时还介绍了几种正在研究的激光加速器。  相似文献   

7.
《电子世界》2018,(7):34-35
研究了紧聚焦的线偏振飞秒强激光脉冲剧烈加速初始静止的低能相对论电子的效应,发现通过调控激光脉冲宽度可以使电子在激光脉冲纵向有质动力下获GeV量级的能量增益,并进一步研究了被加速电子脱离激光束后的速度偏向角和能量增益受激光脉宽变化的影响,发现当激光脉宽在8λ_0到10λ_0之间时可以获得准直性好的高能电子束,当激光脉宽超过10λ_0时,电子能量增益变化不大且准直性不好。  相似文献   

8.
杜春光  陈朝阳  徐至展 《中国激光》1999,26(12):1071-1074
分析了等离子体中传播的圆偏振激光脉冲对注入电子(沿任意方向注入)的加速。导出了电子获得加速所需的激光强度阈值及相应的电子能量增益的一般解析表达式。该强度阈值对电子的初始横向动量十分敏感,为了获得较低的阈值,应尽可能使电子的初始运动方向沿激光脉冲的传播方向。  相似文献   

9.
讨论了有关在真空、中性气体和等离子体中激光加速的若干重要问题。对与电子滑移、激光衍射、材料的破坏和电子的孔径效应有关的激光真空加速所肥到的各种限制进行了讨论。提出了反切仑科夫激光加速组态,在该组态中激光束在部分电离气体中是自导的。光学自导是中性气体的非线性自聚集特性和电离衍射效应之间平衡的结果。分析并讨论了自导光束的稳定性。此外,还论及激光尾迹场加速器的有关问题,并大略地讨论了激光驱动的加速器实验  相似文献   

10.
通过对激光脉冲的展宽,放大与压缩,人们能够产生拍瓦功率,吉高斯磁场,太巴光压与1m/s^2的电子加速。  相似文献   

11.
超强激光场中磁逆多光子非线性Compton散射的电子加速   总被引:2,自引:1,他引:1  
应用电子与多光子集团非弹性Compton散射模型,分析、计算了磁逆多光子非线性 Compton 散射的电子加速,结果表明,散射前做Landau圆轨道运动的电子并非是热电子,而 是处于激发态的电子。当耦合光的频率与处于激发态电子的频率相等时,能发生磁逆多光子 非线性Compton散射,放出高 射线,但产生高 射线的几率要比产生低 射线的几率小。 若电子被光场俘获,电子可从激光场中获得巨大的加速能量。  相似文献   

12.
为了探究超强激光偏振参数的梯度变化对场内高能电子运动及辐射特性的影响, 首先以电磁学基本方程为基础, 推导并建立了初始动量为0的相对论性单电子加速模型, 其次编写无近似的数值模拟仿真程序进行迭代计算与理论分析, 取得了不同偏振参数的超强激光作用下单电子的运动以及空间辐射可视化数据。结果表明, 随着偏振参数δ由0到1逐渐增大, 电子的运动轨迹由2维平面振荡逐渐过渡为3维螺旋状前进, 绕旋幅度逐渐增大且轨迹投影逐渐趋向于正圆; 电子的功率辐射空间分布也从平面线性逐渐变为3维涡旋状, 由上下针状分叉逐渐变为平滑连接, 总体变化趋势可按形态划分为δ=0, δ∈(0, 0.6], δ∈(0.6, 0.99]以及δ=1共4个阶段。该结果为高能电子辐射研究提供了多视角的理论及数值依据, 对实际应用中精确探测超强激光各项参数是有帮助的。  相似文献   

13.
激光诱导击穿光谱(LIBS)是一种快速、实时的元素成分分析技术。为了提高LIBS的灵敏度,人们已经提出多种方法来提高LIBS的光谱强度。本文采用飞秒脉冲激光烧蚀黄铜产生LIBS,对比了圆偏振和线偏振下LIBS光谱的强度,结果发现圆偏振下的光谱强度比线偏振下的强,光谱强度大约提高了15%。采用飞秒激光照射金属时,金属内部的自由电子吸收光子的能量。在线偏振飞秒激光场中,电子在脉冲的每个光学周期中经历交替的加速和减速;而圆偏振飞秒激光可以连续加速电子,因此电子可以获得更高的能量,这使得圆偏振飞秒激光产生的光谱强度不同于线偏振飞秒激光产生的光谱强度,圆偏振激光有助于改善飞秒LIBS信号的强度。  相似文献   

14.
Malka.  G Lefeb.  E 《强激光技术进展》1998,8(2):46-F004
用高强度亚皮秒激光脉冲已在真空中将自由电子加速到兆电子伏的能量。从最大能量和散射角两方面看,实验数据与预期的电子在有限时空电磁场中的相对论运动符合极好。  相似文献   

15.
拍瓦强激光束可使原子核产生反应以击碎原子。由激光加速的电子以近光束运动与金箔靶的原子核碰撞,产生γ射线,可把其他金原子核的中子击出,使金元素变为铂之类元素。γ射线也可以驱动处于金后面的铀层,使铀核分裂为较轻的元素。在拍瓦激光面世前,所有这些效应都只能在粒子加速器或核反应堆内才能发生。  相似文献   

16.
太瓦激光产生更快的电子加速最近在设计高峰值功率激光器和如何利用它们来加速电子的新概念方面所取得的技术进展将使加速器和高能光子源发生革命。打从1987年发展啁啾脉冲放大技术以来,高功率激光器的尺寸已经减小[1]。现在,台式激光器已能产生几十大瓦功率范围...  相似文献   

17.
陆全明  钟方川  徐至展  王水 《中国激光》1998,25(11):1003-1007
应用一维粒子模拟方法(Particle-in-Cel)数值研究了超短超强激光(Iλ2>1018Wμm2/cm2)和稀薄等离子体相互作用后等离子体尾波的产生及其对电子的加速。结果表明,单束激光和拍波与稀薄等离子体相互作用后,在等离子体中都能激发起尾波,但拍波激发的等离子体尾波的强度和波长较大,同时等离子体中的电子动量也给加速得比较大  相似文献   

18.
黄御  梁勖  朱能伟  潘宁  林颖  方晓东 《激光技术》2018,42(4):440-445
柔性电子是可穿戴设备、物联网等应用发展的重要研究方向。激光剥离技术是一种利用激光能量来分离玻璃基板与柔性衬底的技术,具有作用光波长可选、作用时间短、热影响区域小的优点,是目前实现柔性电子器件的最重要技术之一。介绍了激光剥离的主要技术特点,分析其在不同的柔性电子领域的应用,讨论了应用过程中的主要工艺和作用,并总结了激光剥离技术未来的发展趋势。激光剥离技术的快速发展,会对柔性电子行业的研究和发展形成强力支持。  相似文献   

19.
用伏安法初步研究了激光照射下金电极/溶液界面的电子转移行为。对Fe^3+/Fe^2+,激光照射引起氧化还原峰增高并向阳极方向移动,氧化还原电位负向变化,激光功率对电流-电位曲线的平移幅度具有明显影响。激光照射对抗坏血酸的电子转移作用更显著,电流峰高增加了2.02倍,过电位减少了0.25V。激光能量对电极表面的作用及界面溶液层的影响加速了电子转移并提高了电极反应的灵敏度。  相似文献   

20.
伦敦帝国学院的Karl Krushelnick小组把高功率激光聚焦到氦喷气束内,将电子加速至300MeV,较以往的能量提高三个数量级。然而他们发现,当激光能量增加时,电子加速的机理改变。要把粒子加速至吉电子伏范围,常规加速器的长度必须几百米或更长。激光产生等离子体可成为下一代台式加速器的基础,因为它  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号