首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Designing and utilization of biomimetic membrane systems generated by bottom-up processes is a rapidly growing scientific and engineering field. Elucidation of the supramolecular construction principle of archaeal cell envelopes composed of S-layer stabilized lipid membranes led to new strategies for generating highly stable functional lipid membranes at meso- and macroscopic scale. In this review, we provide a state-of-the-art survey of how S-layer proteins, lipids and polymers may be used as basic building blocks for the assembly of S-layer-supported lipid membranes. These biomimetic membrane systems are distinguished by a nanopatterned fluidity, enhanced stability and longevity and, thus, provide a dedicated reconstitution matrix for membrane-active peptides and transmembrane proteins. Exciting areas in the (lab-on-a-) biochip technology are combining composite S-layer membrane systems involving specific membrane functions with the silicon world. Thus, it might become possible to create artificial noses or tongues, where many receptor proteins have to be exposed and read out simultaneously. Moreover, S-layer-coated liposomes and emulsomes copying virus envelopes constitute promising nanoformulations for the production of novel targeting, delivery, encapsulation and imaging systems.  相似文献   

2.
The crystalline cell-surface (S) layer sgsE of Geobacillus stearothermophilus NRS 2004/3a represents a natural protein self-assembly system with nanometer-scale periodicity that is evaluated as a combined carrier/patterning element for the conception of novel types of biocatalyst aiming at the controllable display of biocatalytic epitopes, storage stability, and reuse. The glucose-1-phosphate thymidylyltransferase RmlA is used as a model enzyme and chimeric proteins are constructed by translational fusion of rmlA to the C-terminus of truncated forms of sgsE (rSgsE (131-903), rSgsE(331-903)) and used for the construction of three principal types of biocatalysts: soluble (monomeric), self-assembled in aqueous solution, and recrystallized on negatively charged liposomes. Enzyme activity of the biocatalysts reaches up to 100 % compared to sole RmlA cloned from the same bacterium. The S-layer portion of the biocatalysts confers significantly improved shelf life to the fused enzyme without loss of activity over more than three months, and also enables biocatalyst recycling. These nanopatterned composites may open up new functional concepts for biocatalytic applications in nanobiotechnology.  相似文献   

3.
Two-dimensional bacterial surface layer protein crystals (S-layers) are the most commonly observed cell surface structures in prokaryotic organisms (bacteria and archaea). Isolated S-layer proteins have the intrinsic tendency to self-assemble into two-dimensional arrays in suspension and at various interfaces. Basic research on the structure, genetics, chemistry, morphogenesis and function of S-layers has led to a broad spectrum of applications in molecular nanotechnology and biomimetics. The possibility to change the natural properties of S-layer proteins by genetic manipulation opens new ways for the tuning of their structural and functional features. Functionalised S-layer proteins that maintain their propensity for self-assembly have led to new affinity matrices, diagnostic tools, vaccines or biocompatible surfaces, as well as to biological templating or specific biomineralisation strategies at surfaces.  相似文献   

4.
Crystalline bacterial cell surface layers (S-layers) composed of identical protein units have been used as binding templates for well-organized arrangements of nanoparticles. Isolated S-layer proteins were recrystallized into monomolecular arrays on solid substrates (such as silicon wafers and SiO2-coated grids) and in suspension forming so-called self-assembly products. These S-layer assemblies were studied by atomic force microscopy and transmission electron microscopy (TEM). The orientation of the S-layer lattice, exhibiting anisotropic surface properties, on the solid surface and on the self-assembly products, was compared with the orientation on the bacterial cell. On both bacterial cells and SiO2 surfaces the outer face of the S-layer protein was exposed. On the self-assembly products occasionally the inner face was also visible. Metal- and semiconductor nanoparticles 2 to 10 nm in mean diameter were covalently or electrostatically bound to the solid-supported S-layers and self-assembly products. TEM studies reveal that upon activation of carboxyl groups in the S-layer lattice with 1-ethyl-3,3'(dimethylaminopropyl)carbodiimide (EDC), a close-packed monolayer of 4-nm amino-functionalized CdSe nanoparticles could be covalently established on the S-layer lattice. Because of electrostatic interactions, anionic citrate-stabilized Au nanoparticles (5 nm in diameter) formed a superlattice at those sites where the inner face of the S-layer lattice was exposed. In contrast, cationic semiconductor nanoparticles (such as amino-functionalized CdSe particles) formed arrays on the outer face of the solid-supported S-layer lattices.  相似文献   

5.
A novel hybrid sandwich-like supramolecular structure (polyelectrolyte multilayer/S-layer/ polyelectrolyte multilayer/S-layer) has been built by combining polyelectrolyte multilayer deposition and self-assembly of isolated SbpA proteins from Bacillus sphaericus CCM2177. Neutron reflectometry measurements were used to confirm the formation of an S-layer on negative poly(styrene sulphonate) (PSS) terminated multilayers, further adsorption of cationic poly(allylamine hydrochloride) polyelectrolyte on the exposed S-layer surface, and final polyelectrolyte multilayer deposition. Surface topography investigations with atomic force microscopy showed that: (i) the two dimensional structure of the S-layer is similar to those found in bacteria, (ii) cationic poly(allylamine hydrochloride) adsorbs on the bacterial protein side that faces the aqueous media, and (iii) anionic poly(styrene sulphonate) does not adsorb on the S-layer surface. Mechanical stability studies on recrystallized S-layers on anionic negative poly(styrene sulphonate) reveal that loads of 20 nN are able to unfold the S-layer protein. A second adsorption of SbpA monomers on top of a structure composed of polyelectrolyte multilayer/S-layer/polyelectrolyte multilayer led to the formation of S-layers patches mechanically stable for loads up to 9 nN. This hybrid polymer-protein supramolecular complex has permitted to elucidate the nature of the affinity of the bacterial cell surface protein to polyelectrolytes.  相似文献   

6.
The present study introduces a novel nanocarrier system comprising lipidic emulsomes and S‐layer (fusion) proteins as functionalizing tools coating the surface. Emulsomes composed of a solid tripalmitin core and a phospholipid shell are created reproducibly with an average diameter of approximately 300 nm using temperature‐controlled extrusion steps. Both wildtype (wt) and recombinant (r) S‐layer protein SbsB of Geobacillus stearothermophilus PV72/p2 are capable of forming coherent crystalline envelope structures with oblique (p1) lattice symmetry, as evidenced by transmission electron microscopy. Upon coating with wtSbsB, positive charge of emulsomes shifts to a highly negative zeta potential, whereas those coated with rSbsB become charge neutral. This observation is attributed to the presence of a negatively charged glycan, the secondary cell wall polymer (SCWP), which is associated only with wtSbsB. The present study shows for the first time the ability of recombinant and wildtype S‐layer proteins to cover the entire surface of emulsomes with its characteristic crystalline lattice. Furthermore, in vitro cell culture studies reveal that S‐layer coated emulsomes can be uptaken by human liver carcinoma cells (HepG2) without showing any significant cytotoxicity over a wide range of concentrations. The utilization of S‐layer fusion proteins equipped in a nanopatterned fashion by identical or diverse functions may lead to further development of emulsomes in nanomedicine, especially for drug delivery and targeting.  相似文献   

7.
Two-dimensional bacterial cell surface layer protein crystals (S-layers) are the most commonly observed cell surface structure in bacteria and archaea. Isolated S-layer proteins have the intrinsic tendency to self-assemble into crystalline arrays in suspension and on various interfaces. Basic research on the structure, genetics, chemistry, morphogenesis and function of S-layers has led to a broad spectrum of applications in nanotechnology and biomimetics. The possibility to change the properties of S-layer proteins by genetic engineering opens new ways for tuning their functional and structural features. Functionalized S-layer proteins that maintain their ability to self-assemble have led to new affinity matrices, diagnostic tools, vaccines or biocompatible surfaces, as well as to biological templating or specific biomineralisation strategies at surfaces.  相似文献   

8.
One approach to develop nanosystems that incorporate biological concepts involves the addition of biotic moieties (carbohydrates, DNA, protein) to abiotic scaffolds such as carbon nanotubes. These hybrids have interesting properties but incorporation of specific, site-directed functionalization is challenging and the resulting material is best described in terms of its bulk properties. An alternative approach to the development of bionanosystems is to adapt an existing biological system. This method has several advantages, including access to the powerful tools of protein engineering and ready biological acceptance as these structures themselves are biotic in origin. We have chosen the type IV pilus, a fiber-like structure from the bacteria Pseudomonas aeruginosa, as our model system for the development of a protein-based nanotube. This review highlights the biological characteristics of our model system, presents the novel features of our pilin-derived protein nanotubes, and discusses how these protein nanotubes may contribute to bionanotechnology.  相似文献   

9.
重组鲈鱼生长激素的分离纯化及抗体制备   总被引:3,自引:1,他引:2  
用IPTG诱导鲈鱼生长激素基因工程菌E.coli.RV308,使重组鲈鱼生长激素得以表达并分泌到周质空间,利用渗透休克法从菌液中提取间质蛋白,经DEAE-SepharoseCL-6B、矣丙烯酰胺凝胶电泳及SephadexG-75纯化后得到单一电泳纯的重组鲈鱼生长激素,并将此激素作为抗原制备抗体,可应用于鱼类血液中生长激素含量的测定。  相似文献   

10.
Using recombinant DNA technology for expression of protein therapeutics is a maturing field of pharmaceutical research and development. As recombinant proteins are increasingly utilized as biotherapeutics, improved methodologies ensuring the characterization of post-translational modifications (PTMs) are needed. Typically, proteins prepared for PTM analysis are proteolytically digested and analyzed by mass spectrometry. To ensure full coverage of the PTMs on a given protein, one must obtain complete sequence coverage of the protein, which is often quite challenging. The objective of the research described here is to design a protocol that maximizes protein sequence coverage and enables detection of post-translational modifications, specifically N-linked glycosylation. To achieve this objective, a highly efficient proteolytic digest protocol using trypsin was designed by comparing the relative merits of denaturing agents (urea and Rapigest SF), reducing agents [dithiothreitol (DTT) and tris(2-carboxyethyl)phophine (TCEP)], and various concentrations of alkylating agent [iodoacetamide (IAM)]. After analysis of human apo-transferrin using various protease digestion protocols, ideal conditions were determined to contain 6 M urea for denaturation, 5 mM TCEP for reduction, 10 mM IAM for alkylation, and 10 mM DTT, to quench excess IAM before the addition of trypsin. This method was successfully applied to a novel recombinant protein, human lysyl oxidase-like 2. Furthermore, the glycosylation PTMs were readily detected at two glycosylation sites in the protein. These digestion conditions were specifically designed for PTM analysis of recombinant proteins and biotherapeutics, and the work described herein fills an unmet need in the growing field of biopharmaceutical analysis.  相似文献   

11.
Histidine, a versatile proteinogenic amino acid, plays a broad range of roles in all living organisms and behaves as a key mediator of the interactions of biomolecules with inorganic constituents. The self-assembly of histidine-rich peptides and proteins is critical in biology, as the histidine unit is both a multifunctional regulator and an ideal motif for the construction of complex biological structures. In particular, non-covalent interactions between the imidazole ring and other molecular building blocks and metal ions are routinely employed to generate these complexes. Therefore, this strategy can be duplicated in an artificial context to create sophisticated bioactive materials. In this review, we first highlight a clear perspective of the bio-inspired design strategies which can replicate the hierarchical structure of biological systems allowing the engineering of the supramolecular self-assembly of histidine-functionalized peptides. We further summarize advancements in the field of peptide supramolecular structures incorporating histidine residues in the peptide backbone to generate organized functional supramolecular biomaterials with customizable features. We also discuss significant advances and future prospects in supramolecular self-assembly of histidine-functionalized peptides, as well as provide an overview of advanced techniques for the fabrication of histidine-based biomaterials for bio-nanotechnology, optoelectronic engineering, and biomedicine. Overall, artificial supramolecular materials based on histidine functionalized peptides, motivated by the intriguing properties discovered in natural proteins, bear the potential to boost the creation of sustainable bio-inspired materials.  相似文献   

12.
Glycomic analysis is an increasingly important field in biological and biomedical research as glycosylation is one of the most important protein post-translational modifications. We have developed a new technique to detect carbohydrates using surface enhanced Raman spectroscopy (SERS) by designing and applying a Rhodamine B derivative as the SERS tag. Using a reductive amination reaction, the Rhodamine-based tag (RT) was successfully conjugated to three model carbohydrates (glucose, lactose, and glucuronic acid). SERS detection limits obtained with a 633 nm HeNe laser were ~1 nM in concentration for all the RT-carbohydrate conjugates and ~10 fmol in total sample consumption. The dynamic range of the SERS method is about 4 orders of magnitude, spanning from 1 nM to 5 μM. Ratiometric SERS quantification using isotope-substituted SERS internal references allows comparative quantifications of carbohydrates labeled with RT and deuterium/hydrogen substituted RT tags, respectively. In addition to enhancing the SERS detection of the tagged carbohydrates, the Rhodamine tagging facilitates fluorescence and mass spectrometric detection of carbohydrates. Current fluorescence sensitivity of RT-carbohydrates is ~3 nM in concentration while the mass spectrometry (MS) sensitivity is about 1 fmol, achieved with a linear ion trap electrospray ionization (ESI)-MS instrument. Potential applications that take advantage of the high SERS, fluorescence, and MS sensitivity of this SERS tagging strategy are discussed for practical glycomic analysis where carbohydrates may be quantified with a fluorescence and SERS technique and then identified with ESI-MS techniques.  相似文献   

13.
Mass spectral analysis is an increasingly common method used to characterize glycoproteins. When more than one glycosylation site is present on a protein, obtaining MS data of glycopeptides is a highly effective way of obtaining glycosylation information because this approach can be used to identify not only what the carbohydrates are but also at which glycosylation site they are attached. Unfortunately, this is not yet a routine analytical approach, in part because data analysis can be quite challenging. We are developing strategies to simplify this analysis. Presented herein is a novel mass spectrometry technique that identifies the peptide moiety of either sulfated, sialylated, or both sialylated and sulfated glycopeptides. This technique correlates product ions in collision-induced dissociation (CID) experiments of suspected glycopeptides to a peptide composition using a newly developed web-based tool, GlycoPep ID. After identifying the peptide portion of glycopeptides with GlycoPep ID, the process of assigning the rest of the glycopeptide composition to the MS data is greatly facilitated because the "unknown" portion of the mass assignment that remains can be directly attributed to the carbohydrate component. Several examples of the utility and reliability of this method are presented herein.  相似文献   

14.
This work describes an original and simple technique for protein immobilization into nanowells, fabricated using nanopatterned array fabrication methods, while ensuring the protein retains normal biological activity. Nanosphere lithography was used to fabricate a nanowell array with nanowells 100?nm in diameter with a periodicity of 500?nm. The base of the nanowells was gold and the surrounding material was silicon dioxide. The different surface chemistries of these materials were used to attach two different self-assembled monolayers (SAM) with different affinities for the protein used here, cytochrome P450 (P450). The nanowell SAM, a methyl terminated thiol, had high affinity for the P450. The surrounding SAM, a polyethylene glycol silane, displayed very little affinity toward the P450 isozyme CYP2C9, as demonstrated by x-ray photoelectron spectroscopy and surface plasmon resonance. The regularity of the nanopatterned array was examined by scanning electron microscopy and atomic force microscopy. P450-mediated metabolism experiments of known substrates demonstrated that the nanowell bound P450 enzyme exceeded its normal activity, as compared to P450 solutions, when bound to the methyl terminated self-assembled monolayer. The nanopatterned array chips bearing P450 display long term stability and give reproducible results making them potentially useful for high-throughput screening assays or as nanoelectrode arrays.  相似文献   

15.
In this work, we compare the immunoreaction efficiency between uniformly functionalized surface and chemically nanopatterned surfaces when applied as platforms for antigen/antibody interactions with and without the use of protein A as orienting protein. On the nanopatterned platform, the immunoreaction efficiency is higher than all the other cases with no protein A pretreatment of the surface, providing evidence of the capability of the adhesive/antiadhesive nanopatterned surface to immobilize the molecules in a reactive state, increasing their possibility to form complexes.  相似文献   

16.
Semiconductor quantum well (QW) light‐emitting diodes (LEDs) have limited temporal modulation bandwidth of a few hundred MHz due to the long carrier recombination lifetime. Material doping and structure engineering typically leads to incremental change in the carrier recombination rate, whereas the plasmonic‐based Purcell effect enables dramatic improvement for modulation frequency beyond the GHz limit. By stacking Ag‐Si multilayers, the resulting hyperbolic metamaterials (HMMs) have shown tunability in the plasmonic density of states for enhancing light emission at various wavelengths. Here, nanopatterned Ag‐Si multilayer HMMs are utilized for enhancing spontaneous carrier recombination rates in InGaN/GaN QWs. An enhancement of close to 160‐fold is achieved in the spontaneous recombination rate across a broadband of working wavelengths accompanied by over tenfold enhancement in the QW peak emission intensity, thanks to the outcoupling of dominating HMM modes. The integration of nanopatterned HMMs with InGaN QWs will lead to ultrafast and bright QW LEDs with a 3 dB modulation bandwidth beyond 100 GHz for applications in high‐speed optoelectronic devices, optical wireless communications, and light‐fidelity networks.  相似文献   

17.
By mimicking the stabilization of bacterial membranes with S-layer proteins, a novel process to fabricate highly stable protein microcapsules is introduced. In this strategy, engineered collagen peptides with site-specific biotinylation are assembled into microcapsules on the oil-in-water droplets, and the resulting microcapsules are reinforced by biomolecular-recognition-based cross-linking with the protein. Furthermore the microcapsules are shown to be versatile scaffolds for developing functionalized hierarchical colloidosomes for important biotechnological applications.  相似文献   

18.
Carbohydrates have been regarded as one of the most ideally suited candidates for chirality study via self-assembly owning to their unique chemical structures, abundance, and sustainability. Much efforts have been devoted to design and synthesize diverse carbohydrate derivatives and self-assemble them into various supermolecular morphologies. Nevertheless, still inadequate attention is paid to deeply and comprehensively understand how the carbohydrate structures and self-assembly approaches affect the final morphologies and properties for future demands. Herein, to fulfill the need, a range of recently published studies relating to the chirality of carbohydrates is reviewed and discussed. Furthermore, to tune the chirality of carbohydrate-based structures on both molecular and superstructural levels via chirality transfer and chirality expression, the designing of the molecules and choosing of the proper approaches for self-assembly are elucidated.  相似文献   

19.
A new type of nanopore sensor design is reported for a reagent-less electrochemical biosensor with no analyte "tagging" by fluorescent molecules, nanoparticles, or other species. This sensor design involves immobilization within Au-coated nanopores of bacterial periplasmic binding proteins (bPBP), which undergo a wide-amplitude, hinge-twist motion upon ligand binding. Ligand binding thus triggers a reduction in the effective thickness of the immobilized protein film, which is detected as an increase in electrolyte conductivity (decrease in impedance) through the nanopores. This new sensor design is demonstrated for glucose detection using a cysteine-tagged mutant (GGR Q26C) of the galactose/glucose receptor (GGR) protein from the bPBP family. The GGR Q26C protein is immobilized onto Au nanoislands that are deposited within the pores of commercially available nanoporous polycarbonate membranes.  相似文献   

20.
Surfaces with ordered, nanopatterned roughness have demonstrated considerable promise in directing cell morphology, migration, proliferation, and gene expression. However, further investigation of these phenomena has been limited by the lack of simple, inexpensive methods of nanofabrication. Here, we report a facile, low-cost nanofabrication approach based on self-assembly of a thin-film of gadolinium-doped ceria on yttria-stabilized zirconia substrates (GDC/YSZ). This approach yields three distinct, randomly-oriented nanofeatures of variable dimensions, similar to those produced via polymer demixing, which can be reproducibly fabricated over tens to hundreds of microns. As a proof-of-concept, we examined the response of SK-N-SH neuroblastoma cells to features produced by this system, and observed significant changes in cell spreading, circularity, and cytoskeletal protein distribution. Additionally, we show that these features can be imprinted into commonly used rigid hydrogel biomaterials, demonstrating the potential broad applicability of this approach. Thus, GDC/YSZ substrates offer an efficient, economical alternative to lithographic methods for investigating cell response to randomly-oriented nanotopographical features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号