共查询到20条相似文献,搜索用时 15 毫秒
1.
Bingxing Shi Sean D. Conner Jian Liu 《International journal of molecular sciences》2014,15(12):22918-22932
Mechanisms of human mutant superoxide dismutase 1 (SOD1)-induced toxicity in causing the familial form of amyotrophic lateral sclerosis (ALS) remain elusive. Identification of new proteins that can selectively interact with mutant SOD1s and investigation of their potential roles in ALS are important to discover new pathways that are involved in disease pathology. Using the yeast two-hybrid system, we identified the adaptor-associated kinase 1 (AAK1), a regulatory protein in clathrin-coated vesicle endocytic pathway that selectively interacted with the mutant but not the wild-type SOD1. Using both transgenic mouse and rat SOD1-linked familial ALS (FALS) models, we found that AAK1 was partially colocalized with the endosomal and presynaptic protein markers under the normal physiological condition, but was mislocated into aggregates that contained mutant SOD1s and the neurofilament proteins in rodent models of ALS in disease. AAK1 protein levels were also decreased in ALS patients. These results suggest that dysfunction of a component in the endosomal and synaptic vesicle recycling pathway is involved in ALS pathology. 相似文献
2.
Anna Shteinfer-Kuzmine Shirel Argueti-Ostrovsky Marcel F. Leyton-Jaimes Uttpal Anand Salah Abu-Hamad Ran Zalk Varda Shoshan-Barmatz Adrian Israelson 《International journal of molecular sciences》2022,23(17)
Impaired mitochondrial function has been proposed as a causative factor in neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), caused by motor neuron degeneration. Mutations in superoxide dismutase (SOD1) cause ALS and SOD1 mutants were shown to interact with the voltage-dependent anion channel 1 (VDAC1), affecting its normal function. VDAC1 is a multi-functional channel located at the outer mitochondrial membrane that serves as a mitochondrial gatekeeper controlling metabolic and energetic crosstalk between mitochondria and the rest of the cell and it is a key player in mitochondria-mediated apoptosis. Previously, we showed that VDAC1 interacts with SOD1 and that the VDAC1-N-terminal-derived peptide prevented mutant SOD1 cytotoxic effects. In this study, using a peptide array, we identified the SOD1 sequence that interacts with VDAC1. Synthetic peptides generated from the identified VDAC1-binding sequences in SOD1 directly interacted with purified VDAC1. We also show that VDAC1 oligomerization increased in spinal cord mitochondria isolated from mutant SOD1G93A mice and rats. Thus, we used the novel VDAC1-specific small molecules, VBIT-4 and VBIT-12, inhibiting VDAC1 oligomerization and subsequently apoptosis and associated processes such as ROS production, and increased cytosolic Ca2+. VBIT-12 was able to rescue cell death induced by mutant SOD1 in neuronal cultures. Finally, although survival was not affected, VBIT-12 administration significantly improved muscle endurance in mutant SOD1G93A mice. Therefore, VBIT-12 may represent an attractive therapy for maintaining muscle function during the progression of ALS. 相似文献
3.
Yu Hashimoto Ryo Yamasaki Senri Ko Eriko Matsuo Yuko Kobayakawa Katsuhisa Masaki Dai Matsuse Noriko Isobe 《International journal of molecular sciences》2022,23(24)
Connexin 30 (Cx30), which forms gap junctions between astrocytes, regulates cell adhesion and migration, and modulates glutamate transport. Cx30 is upregulated on activated astroglia in central nervous system inflammatory lesions, including spinal cord lesions in mutant superoxide dismutase 1 (mSOD1) transgenic amyotrophic lateral sclerosis (ALS) model mice. Here, we investigated the role of Cx30 in mSOD1 mice. Cx30 was highly expressed in the pre-onset stage in mSOD1 mice. mSOD1 mice with knockout (KO) of the Cx30 gene (Cx30KO-mSOD1 mice) showed delayed disease onset and tended to have an extended survival period (log-rank, p = 0.09). At the progressive and end stages of the disease, anterior horn cells were significantly preserved in Cx30KO-mSOD1 mice. In lesions of these mice, glial fibrillary acidic protein/C3-positive inflammatory astroglia were decreased. Additionally, the activation of astrocytes in Cx30KO-mSOD1 mice was reduced compared with mSOD1 mice by gene expression microarray. Furthermore, expression of connexin 43 at the pre-onset stage was downregulated in Cx30KO-mSOD1 mice. These findings suggest that reduced expression of astroglial Cx30 at the early disease stage in ALS model mice protects neurons by attenuating astroglial inflammation. 相似文献
4.
Liu J Akhavan A Lu M Gruzman A Lingappa VR An J Bowser R 《International journal of molecular sciences》2010,11(10):4051-4062
We recently reported the presence of a novel 32 kDa protein immunoreactive to a copper, zinc superoxide dismutase (SOD1) antibody within the spinal cord of patients with amyotrophic lateral sclerosis (ALS). This unique protein species was generated by biotinylation of spinal cord tissue extracts to detect conformational changes of SOD1 specific to ALS patients. To further characterize this protein, we enriched the protein by column chromatography and determined its protein identity by mass spectrometry. The protein that gave rise to the 32 kDa species upon biotinylation was identified as carbonic anhydrase I (CA I). Biotinylation of CA I from ALS spinal cord resulted in the generation of a novel epitope recognized by the SOD1 antibody. This epitope could also be generated by biotinylation of extracts from cultured cells expressing human CA I. Peptide competition assays identified the amino acid sequence in carbonic anhydrase I responsible for binding the SOD1 antibody. We conclude that chemical modifications used to identify pathogenic protein conformations can lead to the identification of unanticipated proteins that may participate in disease pathogenesis. 相似文献
5.
Maria Ciuro Maria Sangiorgio Giampiero Leanza Rosario Gulino 《International journal of molecular sciences》2023,24(1)
A complex interaction between genetic and external factors determines the development of amyotrophic lateral sclerosis (ALS). Epidemiological studies on large patient cohorts have suggested that ALS is a multi-step disease, as symptom onset occurs only after exposure to a sequence of risk factors. Although the exact nature of these determinants remains to be clarified, it seems clear that: (i) genetic mutations may be responsible for one or more of these steps; (ii) other risk factors are probably linked to environment and/or to lifestyle, and (iii) compensatory plastic changes taking place during the ALS etiopathogenesis probably affect the timing of onset and progression of disease. Current knowledge on ALS mechanisms and therapeutic targets, derives mainly from studies involving superoxide dismutase 1 (SOD1) transgenic mice; therefore, it would be fundamental to verify whether a multi-step disease concept can also be applied to these animal models. With this aim, a meta-analysis study has been performed using a collection of primary studies (n = 137), selected according to the following criteria: (1) the studies should employ SOD1 transgenic mice; (2) the studies should entail the presence of a disease-modifying experimental manipulation; (3) the studies should make use of Kaplan–Meier plots showing the distribution of symptom onset and lifespan. Then, using a subset of this study collection (n = 94), the effects of treatments on key molecular mechanisms, as well as on the onset and progression of disease have been analysed in a large population of mice. The results are consistent with a multi-step etiopathogenesis of disease in ALS mice (including two to six steps, depending on the particular SOD1 mutation), closely resembling that observed in patient cohorts, and revealed an interesting relationship between molecular mechanisms and disease manifestation. Thus, SOD1 mouse models may be considered of high predictive value to understand the determinants of disease onset and progression, as well as to identify targets for therapeutic interventions. 相似文献
6.
Glioblastoma (GBM) is the most malignant primary brain tumor. Despite increasing research on GBM treatment, the overall survival rate has not significantly improved over the last two decades. Although recent studies have focused on aberrant metabolism in GBM, there have been few advances in clinical application. Thus, it is important to understand the systemic metabolism to eradicate GBM. Together with the Warburg effect, lipid metabolism has emerged as necessary for GBM progression. GBM cells utilize lipid metabolism to acquire energy, membrane components, and signaling molecules for proliferation, survival, and response to the tumor microenvironment. In this review, we discuss fundamental cholesterol, fatty acid, and sphingolipid metabolism in the brain and the distinct metabolic alterations in GBM. In addition, we summarize various studies on the regulation of factors involved in lipid metabolism in GBM therapy. Focusing on the rewiring of lipid metabolism will be an alternative and effective therapeutic strategy for GBM treatment. 相似文献
7.
8.
Natalia Nowicka Kamila Szymaska Judyta Juranek Kamila Zglejc-Waszak Agnieszka Korytko Micha Zacki Magorzata Chmielewska-Krzesiska Krzysztof Wsowicz Joanna Wojtkiewicz 《International journal of molecular sciences》2022,23(4)
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by a progressive degeneration of upper and lower motor neurons that causes paralysis and muscle atrophy. The pathogenesis of the disease is still not elucidated. Receptor for Advanced Glycation End Product (RAGE) is a major component of the innate immune system and has implications in ALS pathogenesis. Multiple studies suggest the role of RAGE and its ligands in ALS. RAGE and its ligands are overexpressed in human and murine ALS motor neurons, astrocytes, and microglia. Here, we demonstrated the expression of RAGE and its ligands during the progression of the disease in the transgenic SOD1 G93A mouse lumbar spinal cord. We observed the highest expression of HMGB1 and S100b proteins at ALS onset. Our results highlight the potential role of RAGE and its ligands in ALS pathogenesis and suggest that some of the RAGE ligands might be used as biomarkers in early ALS diagnosis and potentially be useful in targeted therapeutic interventions at the early stage of this devastating disease. 相似文献
9.
Atherosclerosis is one of the most important problems in modern medicine. Its high prevalence and social significance determine the need for a better understanding of the mechanisms of the disease’s development and progression. Lipid metabolism and its disorders are one of the key links in the pathogenesis of atherosclerosis. Lipids are involved in many processes, including those related to the mechanoreception of endothelial cells. The multifaceted role of lipids in endothelial mechanobiology and mechanisms of atherogenesis are discussed in this review. Endothelium is involved in ensuring adequate vascular hemodynamics, and changes in blood flow characteristics are detected by endothelial cells and affect their structure and function. 相似文献
10.
11.
Nathan Favalier Vincent Vron Michael Marchand Anne Surget Patrick Maunas Nicolas Turonnet Stphane Panserat Lucie Marandel 《International journal of molecular sciences》2021,22(11)
Rainbow trout are considered as a poor user of dietary carbohydrates, displaying persistent postprandial hyperglycaemia when fed a diet containing high amounts of carbohydrates. While this phenotype is well-described in juveniles, less attention was given to broodstock. Our objective was to assess for the first time the short-term consequences of feeding mature female and male, and neomale trout with a low-protein high-carbohydrate diet on glucose and lipid metabolism. Fish were fed for two days with a diet containing either no or 32% of carbohydrates. We analysed plasma metabolites, mRNA levels and enzymatic activities of glycolysis, gluconeogenesis, de novo lipogenesis and β-oxidation in the liver. Results demonstrated that the glucose and lipid metabolism were regulated by the nutritional status in all sexes, irrespective of the carbohydrate intake. These data point out that carbohydrate intake during a short period (5 meals) at 8 °C did not induce specific metabolic changes in broodstock. Finally, we demonstrated, for the first time, sex differences regarding the consequences of two days of feeding on glucose and lipid metabolism. 相似文献
12.
Chenchen Guo Ying Chen Dengyun Wu Yu Du Mengyue Wang Cunqi Liu Jianzhou Chu Xiaoqin Yao 《International journal of molecular sciences》2022,23(18)
Pinellia ternata (Thunb.) Druce is a traditional medicinal plant containing a variety of alkaloids, which are important active ingredients. Brassinolide (BR) is a plant hormone that regulates plant response to environmental stress and promotes the accumulation of secondary metabolites in plants. However, the regulatory mechanism of BR-induced alkaloid accumulation in P. ternata is not clear. In this study, we investigated the effects of BR and BR biosynthesis inhibitor (propiconazole, Pcz) treatments on alkaloid biosynthesis in the bulbil of P. ternata. The results showed that total alkaloid content and bulbil yield was enhanced by 90.87% and 29.67% under BR treatment, respectively, compared to the control. We identified 818 (476 up-regulated and 342 down-regulated) and 697 (389 up-regulated and 308 down-regulated) DEGs in the BR-treated and Pcz-treated groups, respectively. Through this annotated data and the Kyoto encyclopedia of genes and genomes (KEGG), the expression patterns of unigenes involved in the ephedrine alkaloid, tropane, piperidine, pyridine alkaloid, indole alkaloid, and isoquinoline alkaloid biosynthesis were observed under BR and Pcz treatments. We identified 11, 8, 2, and 13 unigenes in the ephedrine alkaloid, tropane, piperidine, and pyridine alkaloid, indole alkaloid, and isoquinoline alkaloid biosynthesis, respectively. The expression levels of these unigenes were increased by BR treatment and were decreased by Pcz treatment, compared to the control. The results provided molecular insight into the study of the molecular mechanism of BR-promoted alkaloid biosynthesis. 相似文献
13.
Inga Srensen-Zender Song Rong Hermann Haller Roland Schmitt 《International journal of molecular sciences》2022,23(2)
Chronic kidney disease (CKD) is characterized by a long-term loss of kidney function and, in most cases, by progressive fibrosis. Zinc-alpha2-glycoprotein (AZGP1) is a secreted protein, which is expressed in many different tissues and has been associated with a variety of functions. In a previous study, we have shown in cell culture and in AZGP1 deficient mice that AZGP1 has protective anti-fibrotic effects. In the present study, we tested the therapeutic potential of an experimental increase in AZGP1 using two different strategies. (1) C57Bl/6J mice were treated systemically with recombinant AZGP1, and (2) a transgenic mouse strain was generated to overexpress AZGP1 conditionally in proximal tubular cells. Mice underwent unilateral uretic obstruction as a pro-fibrotic kidney stress model, and kidneys were examined after 14 days. Recombinant AZGP1 treatment was accompanied by better preservation of tubular integrity, reduced collagen deposition, and lower expression of injury and fibrosis markers. Weaker but similar tendencies were observed in transgenic AZGP1 overexpressing mice. Higher AZGP1 levels led to a significant reduction in stress-induced accumulation of tubular lipid droplets, which was paralleled by improved expression of key players in lipid metabolism and fatty acid oxidation. Together these data show beneficial effects of elevated AZGP1 levels in fibrotic kidney disease and highlight a novel link to tubular cell lipid metabolism, which might open up new opportunities for CKD treatment. 相似文献
14.
Magdalena J. M. Marschall Robert Ringseis Denise K. Gessner Sarah M. Grundmann Erika Most Gaiping Wen Garima Maheshwari Holger Zorn Klaus Eder 《International journal of molecular sciences》2021,22(10)
Conflicting reports exist with regard to the effect of ecdysterone, the predominating representative of steroid hormones in insects and plants, on hepatic and plasma lipid concentrations in different rodent models of obesity, fatty liver, and diabetes, indicating that the effect is dependent on the rodent model used. Here, the hypothesis was tested for the first time that ecdysterone causes lipid-lowering effects in genetically obese Zucker rats. To test this hypothesis, two groups of male obese Zucker rats (n = 8) were fed a nutrient-adequate diet supplemented without or with 0.5 g ecdysterone per kg diet. To study further if ecdysterone is capable of alleviating the strong lipid-synthetic activity in the liver of obese Zucker rats, the study included also two groups of male lean Zucker rats (n = 8) which also received either the ecdysterone-supplemented or the non-supplemented diet. While hepatic and plasma concentrations of triglycerides and cholesterol were markedly higher in the obese compared to the lean rats (p < 0.05), hepatic and plasma triglyceride and cholesterol concentrations did not differ between rats of the same genotype fed the diets without or with ecdysterone. In conclusion, the present study clearly shows that ecdysterone supplementation does not exhibit lipid-lowering actions in the liver and plasma of lean and obese Zucker rats. 相似文献
15.
Sanyog Dwivedi Georgina Hernndez-Montes Luis Felipe Montao Erika Patricia Rendn-Huerta 《International journal of molecular sciences》2022,23(22)
(1) Abnormally increased expression of claudin-6 in gastric cancer is considered a prognostic marker of the chromosomal unstable molecular subtype. However, a detailed molecular profile analysis of differentially expressed genes and affected pathways associated with claudin-6 increased (Cldn6high) expression has not been assessed. (2) The TCGA Stomach Adenocarcinoma Pan-Cancer Atlas Data was evaluated using Cytoscape’s Gene Mania, MCODE, and Cytohubba bioinformatic software. (3) 96.88% of Cldn6high gastric cancer tumors belonging to the chromosomal unstable molecular subtype are associated with a worse prognosis. Cldn6expression coincided with higher mutations in TP53, MIEN1, STARD3, PGAP3, and CCNE1 genes compared to Cldn6low expression. In Cldn6high cancers, 1316 genes were highly expressed. Cholesterol metabolism was the most affected pathway as APOA1, APOA2, APOH, APOC2, APOC3, APOB-100, LDL receptor-related protein 1/2, Sterol O-acyltransferase, STARD3, MAGEA-2, -3, -4, -6, -9B, and -12 genes were overexpressed in Cldn6high gastric cancers; interestingly, APOA2 and MAGEA9b were identified as top hub genes. Functional enrichment of DEGs linked HNF-4α and HNF-1α genes as highly expressed in Cldn6high gastric cancer. (4) Our results suggest that APOA2 and MAGEA9b could be considered as prognostic markers for Cldn6high gastric cancers. 相似文献
16.
Christina Wolf Nicole Gredig Susanne E. Ulbrich Michael Kreuzer Joel Berard Katrin Giller 《Lipids》2019,54(9):503-517
Dietary polyunsaturated fatty acids (PUFA), especially n-3 and n-6 fatty acids (FA), play an important role in the regulation of FA metabolism in all mammals. However, FA metabolism differs between different organs, suggesting a distinct partitioning of highly relevant FA. For the present study in cattle, a novel technology was applied to overcome rumen biohydrogenation of dietary unsaturated FA. Angus heifers were fed a straw-based diet supplemented for 8 weeks with 450 g/day of rumen-protected oil, either from fish (FO) or sunflower (SO). The FA composition in blood and five important organs, namely heart, kidney, liver, lung, and spleen, was examined. In blood, proportions of polyunsaturated FA were increased by supplementing FO compared to SO. The largest increase of eicosapentaenoic acid (EPA) proportion was found with FO instead of SO in the kidney, the lowest in the lung. Docosahexaenoic acid (DHA) was increased more in the liver than in kidney, lung, and spleen. The heart incorporated seven times more EPA than DHA, which is more than all other organs and described here for the first time in ruminants. In addition, the heart had the highest proportions of α-linolenic acid (18:3n-3) and linoleic acid (18:2n-6) of all organs. The proportions of polyunsaturated FA in the lung and spleen were exceptionally low compared to heart, liver, and kidney. In conclusion, it was shown that the response to FO in the distribution of dietary n-3 FA was organ-specific while proportions of n-6 FA were quite inert with respect to the type of oil supplemented. 相似文献
17.
Hannah S. Martin Kira A. Podolsky Prof. Neal K. Devaraj 《Chembiochem : a European journal of chemical biology》2021,22(22):3148-3157
Nucleotides, amino acids, sugars, and lipids are almost ubiquitously homochiral within individual cells on Earth. While oligonucleotides and proteins exist as one natural chirality throughout the tree of life, two stereoisomers of phospholipids have separately emerged in archaea and bacteria, an evolutionary divergence known as “the lipid divide”. Within this review, we focus on the emergence of phospholipid homochirality and compare the stability of synthetic homochiral and heterochiral membranes in vitro. We discuss chemical probes designed to study the stereospecific interactions of lipid membranes in vitro. Overall, we aim to highlight studies that help elucidate the determinants of stereospecific interactions between lipids, peptides, and small molecule ligands. Continued work in understanding the drivers of favorable interactions between chiral molecules and biological membranes will lead to the design of increasingly selective chemical tools for bioorthogonal labeling of lipid membranes and safer membrane-associating pharmaceuticals. 相似文献
18.
介绍了芳香脂质的主要化学成分及其透皮吸收相关性,以及它们在皮肤中的代谢过程。分析了芳香疗法中所用芳疗油的分子量大小、浓度、剂型和脂质体与透皮吸收功效性之间的关系,并总结了芳疗中的吸收与一般药理学中吸收的不同之处。 相似文献
19.
20.
Catherine P. Ward Lucy Peng Samuel Yuen Michael Chang Rozalina Karapetyan Edna Nyangau Hussein Mohammed Hector Palacios Naveed Ziari Larry K. Joe Ashley E. Frakes Mohamad Dandan Andrew Dillin Marc K. Hellerstein 《International journal of molecular sciences》2022,23(3)
The unfolded protein response in the endoplasmic reticulum (UPRER) is involved in a number of metabolic diseases. Here, we characterize UPRER-induced metabolic changes in mouse livers in vivo through metabolic labeling and mass spectrometric analysis of lipid and proteome-wide fluxes. We induced UPRER by tunicamycin administration and measured synthesis rates of proteins, fatty acids and cholesterol, as well as RNA-seq. Contrary to reports in isolated cells, hepatic de novo lipogenesis and cholesterogenesis were markedly reduced, as were mRNA levels and synthesis rates of lipogenic proteins. H&E staining showed enrichment with lipid droplets while electron microscopy revealed ER morphological changes. Interestingly, the pre-labeling of adipose tissue prior to UPRER induction resulted in the redistribution of labeled fatty acids from adipose tissue to the liver, with replacement by unlabeled glycerol in the liver acylglycerides, indicating that the liver uptake was of free fatty acids, not whole glycerolipids. The redistribution of adipose fatty acids to the liver was not explicable by altered plasma insulin, increased fatty acid levels (lipolysis) or by reduced food intake. Synthesis of most liver proteins was suppressed under UPRER conditions, with the exception of BiP, other chaperones, protein disulfide isomerases, and proteins of ribosomal biogenesis. Protein synthesis rates generally, but not always, paralleled changes in mRNA. In summary, this combined approach, linking static changes with fluxes, revealed an integrated reduction of lipid and cholesterol synthesis pathways, from gene expression to translation and metabolic flux rates, under UPRER conditions. The reduced lipogenesis does not parallel human fatty liver disease. This approach provides powerful tools to characterize metabolic processes underlying hepatic UPRER in vivo. 相似文献