首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In recent years, the “non-autonomous motor neuron death” hypothesis has become more consolidated behind amyotrophic lateral sclerosis (ALS). It postulates that cells other than motor neurons participate in the pathology. In fact, the involvement of the autonomic nervous system is fundamental since patients die of sudden death when they become unable to compensate for cardiorespiratory arrest. Mitochondria are thought to play a fundamental role in the physiopathology of ALS, as they are compromised in multiple ALS models in different cell types, and it also occurs in other neurodegenerative diseases. Our study aimed to uncover mitochondrial alterations in the sympathoadrenal system of a mouse model of ALS, from a structural, bioenergetic and functional perspective during disease instauration. We studied the adrenal chromaffin cell from mutant SOD1G93A mouse at pre-symptomatic and symptomatic stages. The mitochondrial accumulation of the mutated SOD1G93A protein and the down-regulation of optic atrophy protein-1 (OPA1) provoke mitochondrial ultrastructure alterations prior to the onset of clinical symptoms. These changes affect mitochondrial fusion dynamics, triggering mitochondrial maturation impairment and cristae swelling, with increased size of cristae junctions. The functional consequences are a loss of mitochondrial membrane potential and changes in the bioenergetics profile, with reduced maximal respiration and spare respiratory capacity of mitochondria, as well as enhanced production of reactive oxygen species. This study identifies mitochondrial dynamics regulator OPA1 as an interesting therapeutic target in ALS. Additionally, our findings in the adrenal medulla gland from presymptomatic stages highlight the relevance of sympathetic impairment in this disease. Specifically, we show new SOD1G93A toxicity pathways affecting cellular energy metabolism in non-motor neurons, which offer a possible link between cell specific metabolic phenotype and the progression of ALS.  相似文献   

3.
4.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by a progressive degeneration of upper and lower motor neurons that causes paralysis and muscle atrophy. The pathogenesis of the disease is still not elucidated. Receptor for Advanced Glycation End Product (RAGE) is a major component of the innate immune system and has implications in ALS pathogenesis. Multiple studies suggest the role of RAGE and its ligands in ALS. RAGE and its ligands are overexpressed in human and murine ALS motor neurons, astrocytes, and microglia. Here, we demonstrated the expression of RAGE and its ligands during the progression of the disease in the transgenic SOD1 G93A mouse lumbar spinal cord. We observed the highest expression of HMGB1 and S100b proteins at ALS onset. Our results highlight the potential role of RAGE and its ligands in ALS pathogenesis and suggest that some of the RAGE ligands might be used as biomarkers in early ALS diagnosis and potentially be useful in targeted therapeutic interventions at the early stage of this devastating disease.  相似文献   

5.
Neuroinflammation is a pathological hallmark of several neurodegenerative disorders and plays a key role in the pathogenesis of amyotrophic lateral sclerosis (ALS). It has been implicated as driver of disease progression and is observed in ALS patients, as well as in the transgenic SOD1G93A mouse model. Here, we explore and validate the therapeutic potential of the d-enantiomeric peptide RD2RD2 upon oral administration in SOD1G93A mice. Transgenic mice were treated daily with RD2RD2 or placebo for 10 weeks and phenotype progression was followed with several behavioural tests. At the end of the study, plasma cytokine levels and glia cell markers in brain and spinal cord were analysed. Treatment resulted in a significantly increased performance in behavioural and motor coordination tests and a decelerated neurodegenerative phenotype in RD2RD2-treated SOD1G93A mice. Additionally, we observed retardation of the average disease onset. Treatment of SOD1G93A mice led to significant reduction in glial cell activation and a rescue of neurons. Analysis of plasma revealed normalisation of several cytokines in samples of RD2RD2-treated SOD1G93A mice towards the levels of non-transgenic mice. In conclusion, these findings qualify RD2RD2 to be considered for further development and testing towards a disease modifying ALS treatment.  相似文献   

6.
Amyotrophic lateral sclerosis (ALS) is a disease with a resilient neuroinflammatory component caused by activated microglia and infiltrated immune cells. How to successfully balance neuroprotective versus neurotoxic actions through the use of anti-inflammatory agents is still under debate. There has been a boost of awareness regarding the role of extracellular ATP and purinergic receptors in modulating the physiological and pathological mechanisms in the nervous system. Particularly in ALS, it is known that the purinergic ionotropic P2X7 receptor plays a dual role in disease progression by acting at different cellular and molecular levels. In this context, we previously demonstrated that the P2X7 receptor antagonist, brilliant blue G, reduces neuroinflammation and ameliorates some of the pathological features of ALS in the SOD1-G93A mouse model. Here, we test the novel, noncommercially available, and centrally permeant Axxam proprietary P2X7 antagonist, AXX71, in SOD1-G93A mice, by assessing some behavioral and molecular parameters, among which are disease progression, survival, gliosis, and motor neuron wealth. We demonstrate that AXX71 affects the early symptomatic phase of the disease by reducing microglia-related proinflammatory markers and autophagy without affecting the anti-inflammatory markers or motor neuron survival. Our results suggest that P2X7 modulation can be further investigated as a therapeutic strategy in preclinical studies, and exploited in ALS clinical trials.  相似文献   

7.
We recently reported the presence of a novel 32 kDa protein immunoreactive to a copper, zinc superoxide dismutase (SOD1) antibody within the spinal cord of patients with amyotrophic lateral sclerosis (ALS). This unique protein species was generated by biotinylation of spinal cord tissue extracts to detect conformational changes of SOD1 specific to ALS patients. To further characterize this protein, we enriched the protein by column chromatography and determined its protein identity by mass spectrometry. The protein that gave rise to the 32 kDa species upon biotinylation was identified as carbonic anhydrase I (CA I). Biotinylation of CA I from ALS spinal cord resulted in the generation of a novel epitope recognized by the SOD1 antibody. This epitope could also be generated by biotinylation of extracts from cultured cells expressing human CA I. Peptide competition assays identified the amino acid sequence in carbonic anhydrase I responsible for binding the SOD1 antibody. We conclude that chemical modifications used to identify pathogenic protein conformations can lead to the identification of unanticipated proteins that may participate in disease pathogenesis.  相似文献   

8.
9.
Mechanisms of human mutant superoxide dismutase 1 (SOD1)-induced toxicity in causing the familial form of amyotrophic lateral sclerosis (ALS) remain elusive. Identification of new proteins that can selectively interact with mutant SOD1s and investigation of their potential roles in ALS are important to discover new pathways that are involved in disease pathology. Using the yeast two-hybrid system, we identified the adaptor-associated kinase 1 (AAK1), a regulatory protein in clathrin-coated vesicle endocytic pathway that selectively interacted with the mutant but not the wild-type SOD1. Using both transgenic mouse and rat SOD1-linked familial ALS (FALS) models, we found that AAK1 was partially colocalized with the endosomal and presynaptic protein markers under the normal physiological condition, but was mislocated into aggregates that contained mutant SOD1s and the neurofilament proteins in rodent models of ALS in disease. AAK1 protein levels were also decreased in ALS patients. These results suggest that dysfunction of a component in the endosomal and synaptic vesicle recycling pathway is involved in ALS pathology.  相似文献   

10.
The neurodegenerative disease amyotrophic lateral sclerosis (ALS) affects the spinal cord, brain stem, and cerebral cortex. In this pathology, both neurons and glial cells are affected. However, few studies have analyzed retinal microglia in ALS models. In this study, we quantified the signs of microglial activation and the number of retinal ganglion cells (RGCs) in an SOD1G93A transgenic mouse model at 120 days (advanced stage of the disease) in retinal whole-mounts. For SOD1G93A animals (compared to the wild-type), we found, in microglial cells, (i) a significant increase in the area occupied by each microglial cell in the total area of the retina; (ii) a significant increase in the arbor area in the outer plexiform layer (OPL) inferior sector; (iii) the presence of cells with retracted processes; (iv) areas of cell groupings in some sectors; (v) no significant increase in the number of microglial cells; (vi) the expression of IFN-γ and IL-1β; and (vii) the non-expression of IL-10 and arginase-I. For the RGCs, we found a decrease in their number. In conclusion, in the SOD1G93A model (at 120 days), retinal microglial activation occurred, taking a pro-inflammatory phenotype M1, which affected the OPL and inner retinal layers and could be related to RGC loss.  相似文献   

11.
Amyotrophic lateral sclerosis (ALS) is a fatal neurological condition where motor neurons (MNs) degenerate. Most of the ALS cases are sporadic (sALS), whereas 10% are hereditarily transmitted (fALS), among which mutations are found in the gene that codes for the enzyme superoxide dismutase 1 (SOD1). A central question in ALS field is whether causative mutations display selective alterations not found in sALS patients, or they converge on shared molecular pathways. To identify specific and common mechanisms for designing appropriate therapeutic interventions, we focused on the SOD1-mutated (SOD1-ALS) versus sALS patients. Since ALS pathology involves different cell types other than MNs, we generated lymphoblastoid cell lines (LCLs) from sALS and SOD1-ALS patients and healthy donors and investigated whether they show changes in oxidative stress, mitochondrial dysfunction, metabolic disturbances, the antioxidant NRF2 pathway, inflammatory profile, and autophagic flux. Both oxidative phosphorylation and glycolysis appear to be upregulated in lymphoblasts from sALS and SOD1-ALS. Our results indicate significant differences in NRF2/ARE pathway between sALS and SOD1-ALS lymphoblasts. Furthermore, levels of inflammatory cytokines and autophagic flux discriminate between sALS and SOD1-ALS lymphoblasts. Overall, different molecular mechanisms are involved in sALS and SOD1-ALS patients and thus, personalized medicine should be developed for each case.  相似文献   

12.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder affecting motor neurons in the brain, brainstem and spinal cord, which is characterized by motor dysfunction, muscle dystrophy and progressive paralysis. Both inherited and sporadic forms of ALS share common pathological features, however, the initial trigger of neurodegeneration remains unknown. Motor neurons are uniquely targeted by ubiquitously expressed proteins in ALS but the reason for this selectively vulnerability is unclear. However motor neurons have unique characteristics such as very long axons, large cell bodies and high energetic metabolism, therefore placing high demands on cellular transport processes. Defects in cellular trafficking are now widely reported in ALS, including dysfunction to the molecular motors dynein and kinesin. Abnormalities to dynein in particular are linked to ALS, and defects in dynein-mediated axonal transport processes have been reported as one of the earliest pathologies in transgenic SOD1 mice. Furthermore, dynein is very highly expressed in neurons and neurons are particularly sensitive to dynein dysfunction. Hence, unravelling cellular transport processes mediated by molecular motor proteins may help shed light on motor neuron loss in ALS.  相似文献   

13.
Amyotrophic lateral sclerosis (ALS) is an incurable and lethal neurodegenerative disease in which progressive motor neuron loss and associated inflammation represent major pathology hallmarks. Both the prevention of neuronal loss and neuro-destructive inflammation are still unmet challenges. Medical ozone, an ozonized oxygen mixture (O3/O2), has been shown to elicit profound immunomodulatory effects in peripheral organs, and beneficial effects in the aging brain. We investigated, in a preclinical drug testing approach, the therapeutic potential of a five-day O3/O2 i.p. treatment regime at the beginning of the symptomatic disease phase in the superoxide dismutase (SOD1G93A) ALS mouse model. Clinical assessment of SOD1G93A mice revealed no benefit of medical ozone treatment over sham with respect to gross body weight, motor performance, disease duration, or survival. In the brainstem of end stage SOD1G93A mice, however, neurodegeneration was found decelerated, and SOD1-related vacuolization was reduced in the motor trigeminal nucleus in the O3/O2 treatment group when compared to sham-treated mice. In addition, microglia proliferation was less pronounced in the brainstem, while the hypertrophy of astroglia remained largely unaffected. Finally, monocyte numbers were reduced in the blood, spleen, and mesenteric lymph nodes at postnatal day 60 in SOD1G93A mice. A further decrease in monocyte numbers seen in mesenteric lymph nodes from sham-treated SOD1G93A mice at an advanced disease stage, however, was prevented by medical ozone treatment. Collectively, our study revealed a select neuroprotective and possibly anti-inflammatory capacity for medical ozone when applied as a therapeutic agent in SOD1G93A ALS mice.  相似文献   

14.
Amyotrophic Lateral Sclerosis (ALS) is the most common degenerative motor neuron disease in adults. About 97% of ALS patients present TDP-43 aggregates with post-translational modifications, such as hyperphosphorylation, in the cytoplasm of affected cells. GSK-3β is one of the protein kinases involved in TDP-43 phosphorylation. Up-regulation of its expression and activity is reported on spinal cord and cortex tissues of ALS patients. Here, we propose the repurposing of Tideglusib, an in-house non-ATP competitive GSK-3β inhibitor that is currently in clinical trials for autism and myotonic dystrophy, as a promising therapeutic strategy for ALS. With this aim we have evaluated the efficacy of Tideglusib in different experimental ALS models both in vitro and in vivo. Moreover, we observed that GSK-3β activity is increased in lymphoblasts from sporadic ALS patients, with a simultaneous increase in TDP-43 phosphorylation and cytosolic TDP-43 accumulation. Treatment with Tideglusib decreased not only phospho-TDP-43 levels but also recovered its nuclear localization in ALS lymphoblasts and in a human TDP-43 neuroblastoma model. Additionally, we found that chronic oral treatment with Tideglusib is able to reduce the increased TDP-43 phosphorylation in the spinal cord of Prp-hTDP-43A315T mouse model. Therefore, we consider Tideglusib as a promising drug candidate for ALS, being proposed to start a clinical trial phase II by the end of the year.  相似文献   

15.
Kirsten rat sarcoma viral oncogene homolog (KRAS)-driven pancreatic cancer is very lethal, with a five-year survival rate of <9%, irrespective of therapeutic advances. Different treatment modalities including chemotherapy, radiotherapy, and immunotherapy demonstrated only marginal efficacies because of pancreatic tumor specificities. Surgery at the early stage of the disease remains the only curative option, although only in 20% of patients with early stage disease. Clinical trials targeting the main oncogenic driver, KRAS, have largely been unsuccessful. Recently, global metabolic reprogramming has been identified in patients with pancreatic cancer and oncogenic KRAS mouse models. The newly reprogrammed metabolic pathways and oncometabolites affect the tumorigenic environment. The development of methods modulating metabolic reprogramming in pancreatic cancer cells might constitute a new approach to its therapy. In this review, we describe the major metabolic pathways providing acetyl-CoA and NADPH essential to sustain lipid synthesis and cell proliferation in pancreatic cancer cells.  相似文献   

16.
miRNA(miR)-124 is an important regulator of neurogenesis, but its upregulation in SOD1G93A motor neurons (mSOD1 MNs) was shown to associate with neurodegeneration and microglia activation. We used pre-miR-124 in wild-type (WT) MNs and anti-miR-124 in mSOD1 MNs to characterize the miR-124 pathological role. miR-124 overexpression in WT MNs produced a miRNA profile like that of mSOD1 MNs (high miR-125b; low miR-146a and miR-21), and similarly led to early apoptosis. Alterations in mSOD1 MNs were abrogated with anti-miR-124 and changes in their miRNAs mostly recapitulated by their secretome. Normalization of miR-124 levels in mSOD1 MNs prevented the dysregulation of neurite network, mitochondria dynamics, axonal transport, and synaptic signaling. Same alterations were observed in WT MNs after pre-miR-124 transfection. Secretome from mSOD1 MNs triggered spinal microglia activation, which was unno-ticed with that from anti-miR-124-modulated cells. Secretome from such modulated MNs, when added to SC organotypic cultures from mSOD1 mice in the early symptomatic stage, also coun-teracted the pathology associated to GFAP decrease, PSD-95 and CX3CL1-CX3CR1 signaling im-pairment, neuro-immune homeostatic imbalance, and enhanced miR-124 expression levels. Data suggest that miR-124 is implicated in MN degeneration and paracrine-mediated pathogenicity. We propose miR-124 as a new therapeutic target and a promising ALS biomarker in patient sub-populations.  相似文献   

17.
Motor neurons typically have very long axons, and fine-tuning axonal transport is crucial for their survival. The obstruction of axonal transport is gaining attention as a cause of neuronal dysfunction in a variety of neurodegenerative motor neuron diseases. Depletions in dynein and dynactin-1, motor molecules regulating axonal trafficking, disrupt axonal transport in flies, and mutations in their genes cause motor neuron degeneration in humans and rodents. Axonal transport defects are among the early molecular events leading to neurodegeneration in mouse models of amyotrophic lateral sclerosis (ALS). Gene expression profiles indicate that dynactin-1 mRNA is downregulated in degenerating spinal motor neurons of autopsied patients with sporadic ALS. Dynactin-1 mRNA is also reduced in the affected neurons of a mouse model of spinal and bulbar muscular atrophy, a motor neuron disease caused by triplet CAG repeat expansion in the gene encoding the androgen receptor. Pathogenic androgen receptor proteins also inhibit kinesin-1 microtubule-binding activity and disrupt anterograde axonal transport by activating c-Jun N-terminal kinase. Disruption of axonal transport also underlies the pathogenesis of spinal muscular atrophy and hereditary spastic paraplegias. These observations suggest that the impairment of axonal transport is a key event in the pathological processes of motor neuron degeneration and an important target of therapy development for motor neuron diseases.  相似文献   

18.
Motor neuron diseases (MNDs) are neurodegenerative disorders characterized by upper and/or lower MN loss. MNDs include amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), and spinal and bulbar muscular atrophy (SBMA). Despite variability in onset, progression, and genetics, they share a common skeletal muscle involvement, suggesting that it could be a primary site for MND pathogenesis. Due to the key role of muscle-specific microRNAs (myomiRs) in skeletal muscle development, by real-time PCR we investigated the expression of miR-206, miR-133a, miR-133b, and miR-1, and their target genes, in G93A-SOD1 ALS, Δ7SMA, and KI-SBMA mouse muscle during disease progression. Further, we analyzed their expression in serum of SOD1-mutated ALS, SMA, and SBMA patients, to demonstrate myomiR role as noninvasive biomarkers. Our data showed a dysregulation of myomiRs and their targets, in ALS, SMA, and SBMA mice, revealing a common pathogenic feature associated with muscle impairment. A similar myomiR signature was observed in patients’ sera. In particular, an up-regulation of miR-206 was identified in both mouse muscle and serum of human patients. Our overall findings highlight the role of myomiRs as promising biomarkers in ALS, SMA, and SBMA. Further investigations are needed to explore the potential of myomiRs as therapeutic targets for MND treatment.  相似文献   

19.
Fabry disease (FD) is caused by mutations in the α-galactosidase A (GLA) gene encoding the lysosomal AGAL enzyme. Loss of enzymatic AGAL activity and cellular accumulation of sphingolipids (mainly globotriaosylcermide) may lead to podocyturia and renal loss of function with increased cardiovascular morbidity and mortality in affected patients. To identify dysregulated cellular pathways in FD, we established a stable AGAL-deficient podocyte cell line to perform a comprehensive proteome analysis. Imbalanced protein expression and function were analyzed in additional FD cell lines including endothelial, epithelial kidney, patient-derived urinary cells and kidney biopsies. AGAL-deficient podocytes showed dysregulated proteins involved in thermogenesis, lysosomal trafficking and function, metabolic activity, cell-cell interactions and cell cycle. Proteins associated with neurological diseases were upregulated in AGAL-deficient podocytes. Rescues with inducible AGAL expression only partially normalized protein expression. A disturbed protein expression was confirmed in endothelial, epithelial and patient-specific cells, pointing toward fundamental pathway disturbances rather than to cell type-specific alterations in FD. We conclude that a loss of AGAL function results in profound changes of cellular pathways, which are ubiquitously in different cell types. Due to these profound alterations, current approved FD-specific therapies may not be sufficient to completely reverse all dysregulated pathways.  相似文献   

20.
Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disease affecting both upper and lower motor neurons, and currently, there is no cure or effective treatment. Mutations in a gene encoding a ubiquitous antioxidant enzyme, Cu,Zn-superoxide dismutase (SOD1), have been first identified as a cause of familial forms of ALS. It is widely accepted that mutant SOD1 proteins cause the disease through a gain in toxicity but not through a loss of its physiological function. SOD1 is a major copper-binding protein and regulates copper homeostasis in the cell; therefore, a toxicity of mutant SOD1 could arise from the disruption of copper homeostasis. In this review, we will briefly review recent studies implying roles of copper homeostasis in the pathogenesis of SOD1-ALS and highlight the therapeutic interventions focusing on pharmacological as well as genetic regulations of copper homeostasis to modify the pathological process in SOD1-ALS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号