共查询到18条相似文献,搜索用时 156 毫秒
1.
图神经网络处理非欧氏空间数据的强大能力促使越来越多的研究将其应用于推荐领域。然而,现有的基于图神经网络的推荐模型大多数仍然采用多个邻接矩阵来表示多种节点或边属性等异质信息,没有充分利用异质信息之间的交互。因此,提出一种新型的图神经网络推荐模型,把所有信息实体之间的丰富交互建模成异质图,并在异质图上使用稠密子图采样策略进行子图采样;此外,模型还加入多任务学习方法用于共同优化链接预测与推荐任务,使得模型学习到更好的节点表示,以提升推荐效果。2个公开数据集上的实验结果表明,所提模型相比基线模型,在Top-N推荐任务性能上有所提高。 相似文献
2.
针对多任务学习模型中相关度低的任务之间存在的负迁移现象和信息共享困难问题,提出了一种基于交叉层级数据共享的多任务模型。该模型关注细粒度的知识共享,且能保留浅层共享专家的记忆能力和深层特定任务专家的泛化能力。首先,统一多层级共享专家,以获取复杂相关任务间的公共知识;然后,将共享信息分别迁移到不同层级的特定任务专家之中,从而在上下层之间共享部分公共知识;最后,利用基于数据样本的门控网络自主选择不同任务所需信息,从而减轻样本依赖性对模型的不利影响。相较于多门控混合专家(MMOE)模型,所提模型在UCI census-income数据集上对两个任务的F1值分别提高了7.87个百分点和1.19个百分点;且在MovieLens数据集上的回归任务的均方误差(MSE)值降低到0.004 7,分类任务的AUC值提高到0.642。实验结果表明,所提出的模型适用于改善负迁移现象的影响,且能更高效地学习复杂相关任务之间的公共信息。 相似文献
3.
网络表示学习的目标是将网络中的节点嵌入到低维的向量空间,为下游任务提供有效特征表示.在现实场景中,大规模网络通常具有不完整的链路,而现有的大多数网络表示学习模型都是在网络是完整的假设下设计的,因此其性能很容易受到链路缺失的影响.针对该问题,文中提出了一种基于不完全信息的深度网络表示学习方法DNRL(Deep Network Representa-tion Learning).首先采用转移概率矩阵将结构信息和属性信息进行动态融合,弥补了结构信息不完整带来的过大损失,然后采用一种具有强大特征提取能力的深度生成模型(变分自编码器)来学习节点的低维表示,并捕获网络数据中潜在的高非线性特征.在3个真实属性网络上的实验结果表明,与当前常用的网络表示学习模型相比,所提模型在不同程度链路缺失的节点分类任务中都明显地改善了分类效果,在可视化任务中更清晰地反映了节点的团簇关系. 相似文献
4.
机器学习中冗余特征会降低学习器的性能,而特征选择方法可以去掉一些冗余特征.然而,冗余特征也包含有用信息,因此可以利用多任务学习的概念,通过重复利用冗余特征提高预测精度.但是,如何确定哪些特征作为输入和输出仍然是一个待解决的问题.之前的工作是在多任务学习当中,运用遗传算法来确定哪些特征作为输入,哪些作为输出,取得了较好的效果,但是该算法不足之处是没有考虑到不相关特征.现将特征分为三部分:输入的特征、输出的特征和不相关特征,提出了对一个特征进行双位编码的遗传算法搜索策略.在基因芯片数据上的实验结果表明,提出的新算法e-GA-MTL比已有基于遗传算法的GA-M-TL和其它启发式方法效果更好. 相似文献
5.
现有的基于度量的小样本图像分类模型展现了一定的小样本学习性能,然而这些模型往往忽略了原始数据被分类关键特征的提取。图像数据中与分类无关的冗余信息被融入小样本模型的网络参数中,容易造成基于度量方法的小样本图像分类性能瓶颈。针对这个问题,提出一种基于图神经网络的类别解耦小样本图像分类模型(VT-GNN),该模型结合图像自注意力与分类任务监督的变分自编码器作为图像嵌入模块,得到原始图像类别解耦特征信息,成为图结构中的一个图节点。通过一个多层感知机为节点之间构建具有度量信息的边特征,将一组小样本训练数据构造为图结构数据,借助图神经网络的消息传递机制实现小样本学习。在公开数据集Mini-Imagenet上,VT-GNN在分别5-way 1-shot与5-way 5-shot设置中相较于基线图神经网络模型分别获得了17.9个百分点和16.25个百分点的性能提升。 相似文献
6.
针对当前人脸识别中姿态变化会影响识别性能,以及姿态恢复过程中脸部局部细节信息容易丢失的问题,提出一种基于多任务学习的多姿态人脸重建与识别方法——多任务学习堆叠自编码器(MtLSAE)。该方法通过运用多任务学习机制,联合考虑人脸姿态恢复和脸部局部细节信息保留这两个相关的任务,在步进逐层恢复正面人脸姿态的同时,引入非负约束稀疏自编码器,使得非负约束稀疏自编码器能够学习到人脸部的部分特征;其次在姿态恢复和局部信息保留两个任务之间通过共享参数的方式来学习整个网络框架;最后将重建出来的正脸图像通过Fisherface进行降维并提取具有判别信息的特征,并用最近邻分类器来识别。实验结果表明,MtLSAE方法获得了较好的姿态重建质量,保留的局部纹理信息清晰,而且与局部Gabor二值模式(LGBP)、基于视角的主动外观模型(VAAM)以及堆叠步进自编码器(SPAE)等经典方法相比,识别率性能得以提升。 相似文献
7.
针对面部年龄估计中标签序数信息和类间相关性提取难的问题,提出一种多峰分布(MPD)年龄编码,并基于该年龄编码构建了一个多任务年龄估计方法MPDNet(MPD Network).首先,利用MPD将年龄标签转化为年龄分布,以提取年龄标签间的相关信息,构建年龄老化趋势的阶段性;然后,采用一个轻量级网络进行多阶段的特征提取,并对提取的特征分别进行标签分布学习(LDL)和回归学习;最后,共享两个学习任务的输出,并在训练过程中通过反向传播互相优化,避免传统标签分布学习中对分布结果直接进行回归导致的误差传播.在MORPHⅡ数据集上的实验结果表明,MPDNet的平均绝对误差(MAE)达到2.67,与基于VGGNets(Visual Geometry Group Networks)构建的DEX(Deep EXpectation)、RankingCNN(Ranking Convolutional Neural Network)等方法相当,而参数仅为VGGNets的1/788.6;而且MPDNet也优于同体量的C3AE(extremely Compact yet efficient Cascade Context-based Age Estimation model)、SSR-Net(Soft Stagewise Regression Network)等方法.MPDNet能够较好地利用年龄标签间丰富的相关信息来提取更具判别力的年龄特征,提高年龄估计任务的预测精度. 相似文献
8.
随着互联网的高速发展,海量数据涌现,使得推荐系统成为计算机科学领域的研究热点。变分自编码器已经被成功应用于协同过滤方法的设计中,并取得了出色的推荐效果。然而,以往基于变分自编码器的推荐模型存在一些问题,如对隐变量先验分布的约束以及“后验失效”等,这些问题降低了推荐模型的性能。为了解决这一问题,使变分自编码器模型更加适用于推荐任务,提出了一种基于矢量量化编码的协同过滤推荐方法。该方法采用离散的矢量编码代替变分自编码器从隐变量分布中直接取样获得编码,从观测数据中学习到一个离散的潜在表示,提高了编码的表示能力。在多个公开数据集上的性能评测结果显示,与现有方法相比,所提方法能够有效提升推荐性能。 相似文献
9.
目前,大部分的车辆结构化信息需要通过多个步骤进行提取,存在模型训练繁琐、各步骤模型训练数据有限和过程误差累加等问题.为此,采用多任务学习将车辆结构化信息提取整合在统一的神经网络之中,通过共享特征提取结构,减少过程误差累加,并构建了一个多任务损失函数用于端到端训练神经网络;针对训练样本有限的问题,提出了新的数据整合和增广方法.在KITTI数据集上实验结果表明, VSENet可以达到93.82%的mAP(均值平均精度),且能达到实时的处理速度;与多阶段的车辆结构化特征提取方法对比,平均运行时间缩减了60%,其精度能达到相似或者更好的效果;实验结果表明,该方法具有一定的先进性和有效性. 相似文献
10.
针对大部分联邦学习防御方法存在降低联邦学习实用性、计算效率低和防御攻击种类单一等问题,文章提出一种基于变分自编码器的属性修改框架,在客户端对数据预处理以达到保护联邦学习的目的。首先,为了提高算法计算效率,文章提出一种基于迁移学习的变分自编码器训练方案来减少客户端训练周期;其次,利用变分自编码器具有连续性的潜变量,设计了一种基于属性分布约束规则的属性修改方案来实现客户端训练数据的重构。实验结果表明,属性修改方案可以成功分离和控制图像的属性向量,通过将原始图像改变为带有相应属性的重构图像,保护了客户端数据隐私。将修改后的图像用于训练联邦学习分类任务,其准确率可达94.44%,体现了方案的可用性,并且该方案可以成功防御非主属性隐私泄露和基于数据中毒的后门攻击。 相似文献
11.
由于人类情感的表达受文化和社会的影响,不同语言语音情感的特征差异较大,导致单一语言语音情感识别模型泛化能力不足。针对该问题,提出了一种基于多任务注意力的多语言语音情感识别方法。通过引入语言种类识别辅助任务,模型在学习不同语言共享情感特征的同时也能学习各语言独有的情感特性,从而提升多语言情感识别模型的多语言情感泛化能力。在两种语言的维度情感语料库上的实验表明,所提方法相比于基准方法在Valence和Arousal任务上的相对UAR均值分别提升了3.66%~5.58%和1.27%~6.51%;在四种语言的离散情感语料库上的实验表明,所提方法的相对UAR均值相比于基准方法提升了13.43%~15.75%。因此,提出的方法可以有效地抽取语言相关的情感特征并提升多语言情感识别的性能。 相似文献
12.
面向对话生成问题,提出一种构建对话生成模型的方法--基于分层编码的深度增强学习对话模型(EHRED),用以解决当前标准序列到序列(seq2seq)结构采用最大似然函数作为目标函数所带来的易生成通用回答的问题。该方法结合了分层编码和增强学习技术,利用分层编码来对多轮对话进行建模,在标准seq2seq的基础上新增了中间层来加强对历史对话语句的记忆,而后采用了语言模型来构建奖励函数,进而用增强学习中的策略梯度方法代替原有的最大似然损失函数进行训练。实验结果表明EHRED能生成语义信息更丰富的回答,在标准的人工测评中,其效果优于当前广泛采用的标准seq2seq循环神经网络(RNN)模型5.7~11.1个百分点。 相似文献
13.
强化学习主要研究智能体如何根据环境作出较好的决策,其核心是学习策略。基于传统策略模型的动作选择主要依赖于状态感知、历史记忆及模型参数等,其智能体行为很难受到控制。然而,当人类智能体完成任务时,通常会根据自身的意愿或动机选择相应的行为。受人类决策机制的启发,为了让强化学习中的行为选择可控,使智能体能够根据意图选择动作,将意图变量加入到策略模型中,提出了一种基于意图控制的强化学习策略学习方法。具体地,通过意图变量与动作的互信息最大化使两者产生高相关性,使得策略能够根据给定意图变量选择相关动作,从而达到对智能体的控制。最终,通过复杂的机器人控制仿真任务Mujoco验证了所提方法能够有效地通过意图变量控制机器人的移动速度和移动角度。 相似文献
14.
Graph convolutional neural networks (GNNs) have an excellent expression ability for complex systems. However, the smoothing hypothesis based GNNs have certain limitations for complex process industrial systems with high dynamics and noisy environment. In addition, it is difficult to obtain an accurate information about the interconnections of sensor networks in manufacturing systems, which brings challenges to the application of GNNs. This paper introduces a graph convolution filter with a serial alternating structure of low-pass filter and high-pass filter to alleviate the problem of node feature loss. Furthermore, we propose a simple and effective method to learn graph structure information during training. This method combines the advantages of graph structure learning based on metric method and direct optimization method. Finally, a spatiotemporal parallel feature extraction framework for multivariate time series prediction is constructed. Experiments are carried out on real industrial datasets, and the results demonstrate the effectiveness of the model. 相似文献
15.
在基于神经网络的图表示算法中,当节点属性维度过高、图的规模过大时,从内存到显存的数据传输会成为训练性能的瓶颈。针对这类问题,该方法将图划分算法应用于图表示学习中,降低了内存访问的I/O开销。该方法根据图节点的度数,将图划分成若干个块,使用显存缓存池存储若干个特征矩阵块。每一轮训练,使用缓存池中的特征矩阵块,以此来减少内存到显存的数据拷贝。针对这一思想,该方法使用基于图划分的抽样算法,设计显存的缓存池来降低内存的访问,运用多级负采样算法,降低训练中负样本采样的时间复杂度。在多个数据集上,与现有方法对比发现,该方法的下游机器学习准确率与原算法基本一致,训练效率可以提高2~ 7倍。实验结果表明,基于图划分的图表示学习能高效训练模型,同时保证节点表示向量的测试效果。今后的课题可以使用严谨的理论证明,阐明图划分模型与原模型的理论误差。 相似文献
16.
针对现有正例未标注图学习方法仅提取节点表征信息、独立推断节点类别的问题,提出了一种基于协作推断分类算法,利用节点之间关联信息来帮助推断未标注节点的标签。首先,采用个性化网页排位算法计算每个节点与全体已知正例节点的关联度。其次,采用一个图神经网络学习节点表征信息,与正例关联度联合构造一个局部分类器,预测未标注节点标签;采用另一个图神经网络获取局部节点标签之间依赖关系,与正例关联度联合构造一个关系分类器,协作更新未标注节点标签。然后,借鉴马尔可夫图神经网络方法交替迭代地训练两者,形成多跳步节点标签之间的协作推断;并且,为有效利用正例与未标注节点训练分类器,提出了混合非负无偏风险评估函数。最后,选择两者中任意一个,预测未标注节点的类别。在真实数据集上的实验结果表明,无论是识别单类别正例还是识别多类别合成正例,所述算法均表现出比其他正例未标注学习方法更佳效果,且对正例先验概率误差表现出更好的鲁棒性。 相似文献
17.
近年来,图神经网络对图数据强大的表征能力和建模能力使其在诸多领域广泛应用并取得了重大突破。然而,现有模型往往倾向于对图卷积聚合策略和网络结构进行优化,缺乏了对图数据自身先验知识的探索。针对上述问题,通过知识蒸馏的方法,设计了一种基于特征信息和结构信息增强的多教师学习图神经网络,打破了现有模型对于数据先验知识提取的局限性。针对图数据背后所蕴涵的丰富特征与结构信息,分别设计了节点特征和边的数据增强方式。在此基础上,将原始数据和增强后的数据通过多教师学习模块进行知识嵌入,使得学生模型学习到更多关于数据的先验知识。在Cora、Citeseer和PubMed数据集上,节点分类准确率分别提升了1%、1.3%、1.1%。实验结果表明,提出的信息增强的多教师学习模型能够有效地捕获先验知识。 相似文献
18.
多任务多核学习已逐渐成为在线学习算法研究的热点。对于数据流的处理,现有的在线学习算法在准确性上有一定的欠缺,因此提出一种新的多任务多核在线学习模型用于提高数据流预测的准确性。在保持多任务多核学习的基础上,将其扩展到在线学习中,从而得到一个新的在线学习算法;同时为输入数据保持一定大小的数据窗口,用较小空间换取数据的完整性。实验部分对核函数的选取以及训练样本集的大小进行了较为详细的分析,通过对UCI数据和实际的机场客流量数据进行分析,很好地保障了流数据处理的准确性及实时性,有一定的实际应用价值。 相似文献