首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
何龙  陈晋川  杜小勇 《软件学报》2017,28(3):502-513
SOH(SQL over HDFS)系统通常将数据存储于分布式文件系统HDFS中,采用Map/Reduce或分布式查询引擎来处理查询任务。得益于HDFS以及Map/Reduce的容错能力和可扩展性,SOH系统可以很好地应对数据规模的飞速增长,完成分析型查询处理。然而,在处理选择型查询或交互式查询时,这类系统暴露出性能上的缺陷。本文提出一个通用的索引技术,可以应用于SOH系统中,以提高其查询处理的效率。分析了SOH系统访问HDFS文件的过程,指出了其中影响数据加载时间的关键因素;提出了split层和split内部双层索引机制;设计并实现了聚集索引和非聚集索引。最后,在标准数据集上进行了大量实验,并与现有基于HDFS的索引技术进行了比较。实验结果表明,所提出的索引技术可以有效地提高查询处理的效率。  相似文献   

2.
Linked Open Data initiatives have encouraged the publication of large RDF datasets into the Linking Open Data (LOD) cloud, including DBpedia, YAGO, and Geo-Names. Despite the size of LOD datasets and the development of (semi-)automatic methods to create and link LOD data, these datasets may be still incomplete, negatively affecting thus accuracy of Linked Data processing techniques. We acquire query answer completeness by capturing knowledge collected from the crowd, and propose a novel hybrid query processing engine that brings together machine and human computation to execute SPARQL queries. Our system, HARE, implements these hybrid query processing techniques. HARE encompasses several features: (1) a completeness model for RDF that exploits the characteristics of RDF in order to estimate the completeness of an RDF dataset; (2) a crowd knowledge base that captures crowd answers about missing values in the RDF dataset; (3) a query engine that combines on-the-fly crowd knowledge and estimates provided by the RDF completeness model, to decide upon the sub-queries of a SPARQL query that should be executed against the dataset or via crowd computing to enhance query answer completeness; and (4) a microtask manager that exploits the semantics encoded in the dataset RDF properties, to crowdsource SPARQL sub-queries as microtasks and update the crowd knowledge base with the results from the crowd. Effectiveness and efficiency of HARE are empirically studied on a collection of 50 SPARQL queries against the DBpedia dataset. Experimental results clearly show that our solution accurately enhances answer completeness.  相似文献   

3.
杨程  陆佳民  冯钧 《计算机应用》2020,40(11):3184-3191
随着知识图谱的日益发展和在各个垂直领域的广泛应用,对于资源描述框架(RDF)数据的高效处理需求日益成为现代大数据管理领域中的新课题。RDF是W3C提出的用于描述知识图谱实体以及实体间关系的数据模型。为了有效地应对大规模RDF数据的存储和查询,很多学者考虑在分布式环境中管理RDF数据。RDF数据的分布式存储所面临的关键问题是数据的划分,而划分的结果很大程度上决定了SPARQL的查询性能。从数据划分的角度,主要围绕两类:基于图结构的RDF数据划分方法和基于语义的RDF数据划分方法展开深入阐述。前者包括多粒度层次划分、模板划分和聚类划分,适用于通用领域查询的语义范畴较为宽泛的场景;后者包括哈希划分、垂直划分和模式划分,更加适用于垂直领域查询的语义范畴相对固定的环境。此外,针对几种典型的划分方法进行对比与分析,为未来RDF数据划分方法的研究提供参考。最后,对未来RDF数据划分方法的发展方向进行了归纳总结。  相似文献   

4.
Semantics preserving SPARQL-to-SQL translation   总被引:2,自引:0,他引:2  
Most existing RDF stores, which serve as metadata repositories on the Semantic Web, use an RDBMS as a backend to manage RDF data. This motivates us to study the problem of translating SPARQL queries into equivalent SQL queries, which further can be optimized and evaluated by the relational query engine and their results can be returned as SPARQL query solutions. The main contributions of our research are: (i) We formalize a relational algebra based semantics of SPARQL, which bridges the gap between SPARQL and SQL query languages, and prove that our semantics is equivalent to the mapping-based semantics of SPARQL; (ii) Based on this semantics, we propose the first provably semantics preserving SPARQL-to-SQL translation for SPARQL triple patterns, basic graph patterns, optional graph patterns, alternative graph patterns, and value constraints; (iii) Our translation algorithm is generic and can be directly applied to existing RDBMS-based RDF stores; and (iv) We outline a number of simplifications for the SPARQL-to-SQL translation to generate simpler and more efficient SQL queries and extend our defined semantics and translation to support the bag semantics of a SPARQL query solution. The experimental study showed that our proposed generic translation can serve as a good alternative to existing schema dependent translations in terms of efficient query evaluation and/or ensured query result correctness.  相似文献   

5.
6.
7.
Map/Reduce是海量离线数据分析中广泛应用的并行编程模型.Hive数据仓库基于Map/Reduce实现了查询处理引擎,然而Map/Reduce框架在处理偏斜数据时会出现工作负载分布不均的问题.均衡计算模型(computation balanced model, CBM),其核心思想是通过数据分布特征指导查询计划优化.相应研究贡献包括2部分,首先针对应用极广的GroupBy查询和Join查询建立了运行估价模型,确定了不同场景下查询计划的优化选择分支;其次基于Hive ETL机制设计了一种统计信息收集方法,解决了统计海量数据分布特征的问题.实验数据表明,通过CBM优化的 GroupBy查询耗时节省了8%~45%,Join查询耗时节省了12%~46%;集群CPU负载均衡指标优化了60%~80%,I/O负载均衡指标优化了60%~90%.实验结果证实了基于CBM模型优化的查询计划生成器能显著均衡化Hive查询运行时的集群负载,并优化了查询处理效率.  相似文献   

8.
9.
We address efficient processing of SPARQL queries over RDF datasets. The proposed techniques, incorporated into the gStore system, handle, in a uniform and scalable manner, SPARQL queries with wildcards and aggregate operators over dynamic RDF datasets. Our approach is graph based. We store RDF data as a large graph and also represent a SPARQL query as a query graph. Thus, the query answering problem is converted into a subgraph matching problem. To achieve efficient and scalable query processing, we develop an index, together with effective pruning rules and efficient search algorithms. We propose techniques that use this infrastructure to answer aggregation queries. We also propose an effective maintenance algorithm to handle online updates over RDF repositories. Extensive experiments confirm the efficiency and effectiveness of our solutions.  相似文献   

10.
The RDF-3X engine for scalable management of RDF data   总被引:1,自引:0,他引:1  
RDF is a data model for schema-free structured information that is gaining momentum in the context of Semantic-Web data, life sciences, and also Web 2.0 platforms. The “pay-as-you-go” nature of RDF and the flexible pattern-matching capabilities of its query language SPARQL entail efficiency and scalability challenges for complex queries including long join paths. This paper presents the RDF-3X engine, an implementation of SPARQL that achieves excellent performance by pursuing a RISC-style architecture with streamlined indexing and query processing. The physical design is identical for all RDF-3X databases regardless of their workloads, and completely eliminates the need for index tuning by exhaustive indexes for all permutations of subject-property-object triples and their binary and unary projections. These indexes are highly compressed, and the query processor can aggressively leverage fast merge joins with excellent performance of processor caches. The query optimizer is able to choose optimal join orders even for complex queries, with a cost model that includes statistical synopses for entire join paths. Although RDF-3X is optimized for queries, it also provides good support for efficient online updates by means of a staging architecture: direct updates to the main database indexes are deferred, and instead applied to compact differential indexes which are later merged into the main indexes in a batched manner. Experimental studies with several large-scale datasets with more than 50 million RDF triples and benchmark queries that include pattern matching, manyway star-joins, and long path-joins demonstrate that RDF-3X can outperform the previously best alternatives by one or two orders of magnitude.  相似文献   

11.
杨程  陆佳民  冯钧 《计算机应用》2005,40(11):3184-3191
随着知识图谱的日益发展和在各个垂直领域的广泛应用,对于资源描述框架(RDF)数据的高效处理需求日益成为现代大数据管理领域中的新课题。RDF是W3C提出的用于描述知识图谱实体以及实体间关系的数据模型。为了有效地应对大规模RDF数据的存储和查询,很多学者考虑在分布式环境中管理RDF数据。RDF数据的分布式存储所面临的关键问题是数据的划分,而划分的结果很大程度上决定了SPARQL的查询性能。从数据划分的角度,主要围绕两类:基于图结构的RDF数据划分方法和基于语义的RDF数据划分方法展开深入阐述。前者包括多粒度层次划分、模板划分和聚类划分,适用于通用领域查询的语义范畴较为宽泛的场景;后者包括哈希划分、垂直划分和模式划分,更加适用于垂直领域查询的语义范畴相对固定的环境。此外,针对几种典型的划分方法进行对比与分析,为未来RDF数据划分方法的研究提供参考。最后,对未来RDF数据划分方法的发展方向进行了归纳总结。  相似文献   

12.
The Semantic Web’s promise of web-wide data integration requires the inclusion of legacy relational databases,1 i.e. the execution of SPARQL queries on RDF representation of the legacy relational data. We explore a hypothesis: existing commercial relational databases already subsume the algorithms and optimizations needed to support effective SPARQL execution on existing relationally stored data. The experiment is embodied in a system, Ultrawrap, that encodes a logical representation of the database as an RDF graph using SQL views and a simple syntactic translation of SPARQL queries to SQL queries on those views. Thus, in the course of executing a SPARQL query, the SQL optimizer uses the SQL views that represent a mapping of relational data to RDF, and optimizes its execution. In contrast, related research is predicated on incorporating optimizing transforms as part of the SPARQL to SQL translation, and/or executing some of the queries outside the underlying SQL environment.Ultrawrap is evaluated using two existing benchmark suites that derive their RDF data from relational data through a Relational Database to RDF (RDB2RDF) Direct Mapping and repeated for each of the three major relational database management systems. Empirical analysis reveals two existing relational query optimizations that, if applied to the SQL produced from a simple syntactic translations of SPARQL queries (with bound predicate arguments) to SQL, consistently yield query execution time that is comparable to that of SQL queries written directly for the relational representation of the data. The analysis further reveals the two optimizations are not uniquely required to achieve a successful wrapper system. The evidence suggests effective wrappers will be those that are designed to complement the optimizer of the target database.  相似文献   

13.
One of the challenges of managing an RDF database is predicting performance of SPARQL queries before they are executed. Performance characteristics, such as the execution time and memory usage, can help data consumers identify unexpected long-running queries before they start and estimate the system workload for query scheduling. Extensive works address such performance prediction problem in traditional SQL queries but they are not directly applicable to SPARQL queries. In this paper, we adopt machine learning techniques to predict the performance of SPARQL queries. Our work focuses on modeling features of a SPARQL query to a vector representation. Our feature modeling method does not depend on the knowledge of underlying systems and the structure of the underlying data, but only on the nature of SPARQL queries. Then we use these features to train prediction models. We propose a two-step prediction process and consider performances in both cold and warm stages. Evaluations are performed on real world SPRAQL queries, whose execution time ranges from milliseconds to hours. The results demonstrate that the proposed approach can effectively predict SPARQL query performance and outperforms state-of-the-art approaches.  相似文献   

14.
RDF is a knowledge representation language dedicated to the annotation of resources within the framework of the semantic web. Among the query languages for RDF, SPARQL allows querying RDF through graph patterns, i.e., RDF graphs involving variables. Other languages, inspired by the work in databases, use regular expressions for searching paths in RDF graphs. Each approach can express queries that are out of reach of the other one. Hence, we aim at combining these two approaches. For that purpose, we define a language, called PRDF (for “Path RDF”) which extends RDF such that the arcs of a graph can be labeled by regular expression patterns. We provide PRDF with a semantics extending that of RDF, and propose a correct and complete algorithm which, by computing a particular graph homomorphism, decides the consequence between an RDF graph and a PRDF graph. We then define the PSPARQL query language, extending SPARQL with PRDF graph patterns and complying with RDF model theoretic semantics. PRDF thus offers both graph patterns and path expressions. We show that this extension does not increase the computational complexity of SPARQL and, based on the proposed algorithm, we have implemented a correct and complete PSPARQL query engine.  相似文献   

15.
目前主流的RDF存储系统都是基于关系数据库的,其查询引擎都是将SPARQL转换为SQL,然后由数据库的查询引擎来执行查询.但是,目前的数据库查询优化器对于连接查询的选择度估计都是基于属性独立假设的,这往往导致估计错误而选择了效率低的执行计划,所以属性相关性信息对于SPARQL查询优化器能否找到效率高的执行计划是非常重要的.针对SPARQL转换为SQL后,因连接操作没有优化导致查询效率不高的问题,提出了利用本体信息自动计算属性相关性的方法,从而调整连接操作的选择度估计值,调整连接顺序,提高SPARQL查询中基本图模式的连接查询效率.  相似文献   

16.
17.
18.
传统的SPARQL查询引擎在处理查询时以三元组模式为基本单位做查询优化处理,在三元组模式较多时存在着过多的连接操作,开销比较大。文中基于文档数据库的存储和查询特点,提出一种利用主语分类的方式来存储RDF数据的方法,将不同的RDF三元组按主语分成不同的类,并存入文档数据库的文档中。在处理SPARQL查询时将三元组模式也按照主语分类,构成以主语相关块为单位的查询图,并提出一种基于属性相关性的选择度估计方法来优化查询执行计划。文中利用文档数据库CouchDB实现了新的SPARQL查询引擎,实验证明文中的方法能够提高SPARQL基本图模式查询的效率。  相似文献   

19.
In this paper, we focus on set similarity join on massive probabilistic data using MapReduce, there is no effective approach that can process this problem efficiently. MapReduce is a popular paradigm that can process large volume data more efficiently, in this paper, we proposed two approaches using MapReduce to deal with this task: Hadoop Join by Map Side Pruning and Hadoop Join by Reduce Side Pruning. Hadoop Join by Map Side Pruning uses the sum of the existence probability to filter out the probabilistic sets directly at the Map task side which have no any chance to be similar with any other probabilistic set. Hadoop Join by Reduce Side Pruning uses probability sum based pruning principle and probability upper bound based pruning principle to reduce the candidate pairs at Reduce task side, it can save the comparison cost. Based on the above approaches, we proposed a hybrid solution that employs both Map-side and Reduce-side pruning methods. Finally we implemented the above approaches on Hadoop-0.20.2 and performed comprehensive experiments to their performance, we also test the speedup ratio compared with the naive method: Block Nested Loop Join. The experiment results show that our approaches have much better performance than that of Block Nested Loop Join and also have good scalability. To the best of our knowledge, this is the first work to try to deal with set similarity join on massive probabilistic data problem using MapReduce paradigm, and the approaches proposed in this paper provide a new way to process the massive probabilistic data.  相似文献   

20.
基于开源Hadoop的矢量空间数据分布式处理研究   总被引:1,自引:0,他引:1  
为实现大规模矢量数据的高性能处理,在开源项目Hadoop基础上,设计与开发了一个基于MapReduce的矢量数据分布式计算系统。根据矢量空间数据的特点,通过分析Key/Value数据模型及GeoJSON地理数据编码格式,构建了可存储于Hadoop hdfs的矢量数据Key/Value文本文件格式;探讨矢量数据的MapReduce计算过程,对Map数据分片、并行处理过程及Reduce结果合并等关键步骤进行了详细阐述;基于上述技术,建立了矢量数据分布式计算原型系统,详细介绍系统组成,并将其应用于处理关中地区1∶10万土地利用矢量空间数据,取得较好效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号