共查询到20条相似文献,搜索用时 15 毫秒
1.
基于改进粒子群算法的测试数据自动生成研究 总被引:1,自引:1,他引:1
测试数据的自动产生技术是软件测试的一个重要研究领域,高效的测试数据乍成可以简化测试工作提高测试效率;针对传统遗传算法(GA)容易产生早熟收敛和易陷入局部最优解的问题,提出了一种基于遗传粒子群混合算法(GA-PSO)的软件测试数据自动生成算法,该算法在粒子群算法的基础上引入了遗传算子(交叉概率P<,c>、变异概率P<,m>),使所有测试数据在局部区域中再次寻找最优值,从而避免过早收敛,改进搜索最佳值的能力;仿真实验表明遗传粒子群混合算法与单纯使用简单遗传算法相比,具有更快的收敛速度,其产生最优解的代数得以大大提前,且精度更高. 相似文献
2.
一种面向对象测试用例自动生成的混合算法* 总被引:2,自引:0,他引:2
遗传算法(GA)在测试用例生成方面是一种实用的算法,但是其自身也存在的局限性,如过早收敛、优化效率低等问题.通过引入粒子群算法(PSO),使每一个测试用例在局部区域中再次寻找最优值,以此改进整体算法搜索最佳值的能力,避免过早收敛、优化效率低的问题.与此同时,针对面向对象测试的特点,如封装性等,将混合算法进行适当的改进,满足在不同环境中重复使用类的要求. 相似文献
3.
基于改进PSO算法的测试数据自动生成研究 总被引:1,自引:0,他引:1
为了提高软件测试中测试数据自动生成的效率,提出了一种基于改进PSO算法的测试数据自动生成的方法。通过在标准的PSO算法中引入人工免疫的思想,保持了群体的多样性,从而有效避免标准PSO算法易陷入局部最优的问题,提高了算法全局搜索的能力,增强了算法的整体性能。实验结果表明,利用改进后的PSO算法寻找最优解所需的迭代次数和时间明显少于标准粒子群算法,生成测试数据的速度快、效率高。 相似文献
4.
5.
以程序结构测试自动生成为研究背景,提出了一种重叠路径结构用以描述程序路径,并以此为基础设计了一种多路径测试数据生成适应值算法,实现了一次搜索完成多条路径的测试数据生成。算法通过目标路径间共享遗传算法产生的中间个体减少单一路径搜索始于随机产生的无序个体的初期迭代,从而加快搜索收敛的速度。应用于常用的基准程序和取自实际项目的程序,该算法与典型的分支谓词距离算法相比平均消耗时间缩短了70.6%。 相似文献
6.
基于蚁群算法的软件测试数据自动生成 总被引:16,自引:0,他引:16
傅博 《计算机工程与应用》2007,43(12):97-99,211
提出了一种基于蚁群算法的测试数据自动生成方法。该方法采用位串形式编码,实现了被测程序输入空间到蚂蚁路径网络的映射模型。根据程序插装函数定义的路径信息素轨迹强度,蚂蚁进行群体协作搜索最佳路径,生成测试数据。在基本蚁群算法基础上,通过引入变异算子和自适应挥发系数,提高了蚂蚁路径的多样性,克服了早熟停滞的缺陷。和模拟退火遗传算法进行了对比实验研究,结果表明了该方法的可行性,生成测试数据的效率优于模拟退火遗传算法。 相似文献
7.
聚类是数据挖掘的主要任务之一,它在知识发现、模式识别、决策支持等方面有着重要应用,聚类挖掘已成为一个非常活跃的研究课题;近年来,基于智能计算的数据挖掘方法研究有了较大进展,机器学习、遗传算法、粒子群优化技术的应用在一定程度上改善和提高了聚类挖掘的性能和效率,但聚类技术仍面临着输入参数对领域知识的依赖性、交互动态性等方面的严峻挑战. 相似文献
8.
运用元启发式搜索进行结构性测试数据生成已经被证实是一种有效的方法.在讨论基于搜索的测试数据生成基本框架的基础上,以分支覆盖作为测试覆盖准则,给出了基于粒子群优化(particle swarm optimization, PSO)的测试数据生成算法,并通过分析分支谓词的结构特征提出了一种新的适应函数构造形式.在此基础上,针对一些公开的程序集开展对比性实验分析,证实粒子群优化算法在平均覆盖率、全覆盖成功率、平均收敛代数和搜索时间4项指标上均要优于遗传算法和模拟退火算法.同时,编程实现了4种典型的PSO变体算法并进行测试数据生成效果的实证分析,结果表明:基本PSO是解决测试数据生成问题的首选算法,而综合学习式PSO算法的表现则相对较差. 相似文献
9.
Roy P. Pargas Mary Jean Harrold Robert R. Peck 《Software Testing, Verification and Reliability》1999,9(4):263-282
This paper presents a technique that uses a genetic algorithm for automatic test‐data generation. A genetic algorithm is a heuristic that mimics the evolution of natural species in searching for the optimal solution to a problem. In the test‐data generation application, the solution sought by the genetic algorithm is test data that causes execution of a given statement, branch, path, or definition–use pair in the program under test. The test‐data‐generation technique was implemented in a tool called TGen, in which parallel processing was used to improve the performance of the search. To experiment with TGen, a random test‐data generator called Random was also implemented. Both Tgen and Random were used to experiment with the generation of test‐data for statement and branch coverage of six programs. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
10.
数据流覆盖可有效地检测软件中的缺陷与错误.针对该覆盖准则中存在的插装监测开销庞大和测试数据生成效率不高的问题,提出一种新的基于定值-引用对覆盖的测试数据进化生成方法.该方法主要分为两部分,首先,通过约减测试目标来减少插装开销,提出的包含关系算法可找到一个定值—引用对子集,使得覆盖该子集就能保证所有测试目标被覆盖;然后,采用遗传算法为所有测试目标生成测试数据,设计的适应度函数综合考虑个体实际执行的路径与每个测试目标的定义明确路径的匹配程度.将该方法用于8个基准程序的测试数据生成,并与其他方法比较,结果显示其可有效提高程序覆盖率和测试数据生成效率. 相似文献
11.
软件测试技术中,高效的测试用例生成能够大幅简化测试工作,提高测试效率,节省软件开发成本. 遗传算法作为一种高效的搜索寻优算法已被广泛应用到测试用例自动生成的研究中,然而传统的遗传算法虽然具有良好的全局搜索能力,但对于局部空间的求精问题却不是很有效,存在早熟问题. 针对这些问题,结合禁忌搜索算法,对传统的遗传算法在适应度函数、遗传算子方面进行改进,并进行遗传导向控制,能够有效控制遗传早熟问题,提高遗传算法的局部寻优能力. 实验结果表明,本文所建议的方法在测试用例生成的效率和效果方面均优于基于传统遗传算法的测试用例方法. 相似文献
12.
基于量子遗传算法的软件测试数据自动生成 总被引:2,自引:0,他引:2
测试数据的自动生成是测试阶段最关键的技术问题,改进软件测试方法,对提高软件测试的自动化程度具有十分重要的现实意义;在测试数据的自动生成的方法中,遗传算法虽然取得了较好的效果,但是这种算法存在缺陷和局限性,而量子遗传算法改善了其不足之处;应用量子遗传算法解决软件测试数据生成问题,克服了传统的以测试数据为核心的测试方法的不足和缺陷,实验结果表明量子遗传算法的测试用例生成效率高于遗传算法;所以,量子遗传算法可以作为一种较为理想的算法进行测试数据的自动生成,对软件测试中的测试数据自动生成具有很强的使用价值。 相似文献
13.
测试数据生成是组合测试的一个关键问题,但是组合测试用例集的构造问题的复杂度是NP完全的。提出了一种成对组合测试用例集整体优化和生成的方法。该方法通过编码机制将测试用例数据的生成问题转换为一个基于二进制编码的最优化问题,同时使用遗传算法对此编码空间进行搜索,并对所发现的最优个体进行解码,构造产生最佳测试用例集。实验结果表明,该方法简单高效,且具有解的质量高、时间消耗小的特点。 相似文献
14.
15.
针对粒子群优化算法中群体易出现过早收敛的不足,提出了粒子群优化算法的改进算法AMPSO(adap-tive mutation particle swarm optimization)算法并应用于测试数据生成中.引入约简粒子群优化算法,提高算法搜索速度;在算法进化过程中增加自适应调整策略,定义适应度评价阈值判断群体早熟现象,构建一个改进的自适应变异算子提高粒子变异率;通过实验确定阈值比例系数.结合实验结果从收敛代数和收敛时间两方面对比分析,证明了所提方法不仅能够防止算法出现过早收敛的问题,而且提高了测试数据生成效率. 相似文献
16.
Ricardo Ferreira Vilela João Choma Neto Victor Hugo Santiago Costa Pinto Paulo Sérgio Lopes de Souza Simone do Rocio Senger de Souza 《Concurrency and Computation》2023,35(2):e7489
Concurrent programming is increasingly present in modern applications. Although it provides higher performance and better use of available resources, the mechanisms of interaction between processes/threads result in a greater challenge for software testing activity. The nondeterminism present in those applications is one of the main issues during the test activity since the same test input can produce different possible execution paths, which may or not contain defects. The test data automatic generation can alleviate this problem, ensuring higher speed and reliability in software testing activity. This paper explores the automatic test data generation for concurrent programs through Genetic Algorithm, a bioinspired optimization technique, and proposes a test data generation approach for concurrent programs, called BioConcST, and a new operator for the selection of test subjects, called FuzzyST, which uses fuzzy logic. The approaches were evaluated in an experimental study towards their validation. The results showed that BioConcST is more promising than the other approaches at all analyzed levels. FuzzyST, together with Elitism and Tournament operators, provided the best results; however, it proved more suitable for concurrent programs of higher complexity. 相似文献
17.
18.
组合测试是一种能有效检测由参数间相互作用所引发错误的软件测试方法,覆盖表的生成是该研究领域的一个重要问题.目前,很多方法已被应用于覆盖表生成,基于演化搜索的粒子群算法尽管能得到较优的解,但其性能容易受到配置参数的影响.本文首先使用试验设计的方法,对不同覆盖表生成的算法参数进行优化,系统分析了参数对算法性能的影响.同时,考虑到对不同的覆盖表,最优的算法参数往往不同,因此进一步提出了一种适用于覆盖表生成的自适应粒子群算法.实验结果表明,在一定的参数取值范围内粒子群算法都能获得较好的结果,且不存在一组对任意覆盖表都能有最优性能的算法参数.通过参数调优,能使粒子群算法获得比已有结果规模更小的覆盖表,同时,与经过参数调优后的算法相比,自适应粒子群算法在大部分情况下有更好的性能. 相似文献
19.
20.
改进的粒子群算法在电力系统AGC中的应用 总被引:5,自引:0,他引:5
针对自动发电控制(AGC)中的负荷频率控制(LFC),对粒子群算法的计算过程进行了改进,提出了一种能有效的协调粒子群算法的优化精度和优化速度的方法,即动态改变粒子数目。该方法基于粒子群算法对于粒子数目的相对不敏感,可以在不影响精度的前提下大幅度提高优化速度,节约计算时间,适应予优化对象较复杂的情况。并针对单区域和两区域互联电力系统的不同指标要求,给出了用改进的粒子群优化算法优化PI控制器参数的方法,分别进行优化设计。仿真结果显示,其性能明显优于遗传算法优化的PI控制器。 相似文献