共查询到17条相似文献,搜索用时 15 毫秒
1.
2.
Daniela Mhlich Anne Glasmacher Ilka Müller Johannes Oppermann David Grevenstein Peer Eysel Juliane Heilig Brunhilde Wirth Frank Zaucke Anja Niehoff 《International journal of molecular sciences》2021,22(6)
Osteoarthritis (OA) is a multifactorial disease which is characterized by a change in the homeostasis of the extracellular matrix (ECM). The ECM is essential for the function of the articular cartilage and plays an important role in cartilage mechanotransduction. To provide a better understanding of the interaction between the ECM and the actin cytoskeleton, we investigated the localization and expression of the Ca2+-dependent proteins cartilage oligomeric matrix protein (COMP), thrombospondin-1 (TSP-1), plastin 3 (PLS3) and stromal interaction molecule 1 (STIM1). We investigated 16 patients who suffered from varus knee OA and performed a topographical analysis of the cartilage from the medial and lateral compartment of the proximal tibial plateau. In a varus knee, OA is more pronounced in the medial compared to the lateral compartment as a result of an overloading due to the malalignment. We detected a location-dependent staining of PLS3 and STIM1 in the articular cartilage tissue. The staining intensity for both proteins correlated with the degree of cartilage degeneration. The staining intensity of TSP-1 was clearly reduced in the cartilage of the more affected medial compartment, an observation that was confirmed in cartilage extracts by immunoblotting. The total amount of COMP was unchanged; however, slight changes were detected in the localization of the protein. Our results provide novel information on alterations in OA cartilage suggesting that Ca2+-dependent mechanotransduction between the ECM and the actin cytoskeleton might play an essential role in the pathomechanism of OA. 相似文献
3.
4.
Yingxia Song Atsushi Kurose Renshi Li Tomoki Takeda Yuko Onomura Takayuki Koga Junpei Mutoh Takumi Ishida Yoshitaka Tanaka Yuji Ishii 《International journal of molecular sciences》2021,22(10)
Selenium-binding protein 1 (Selenbp1) is a 2,3,7,8-tetrechlorodibenzo-p-dioxin inducible protein whose function is yet to be comprehensively elucidated. As the highly homologous isoform, Selenbp2, is expressed at low levels in the kidney, it is worthwhile comparing wild-type C57BL mice and Selenbp1-deficient mice under dioxin-free conditions. Accordingly, we conducted a mouse metabolomics analysis under non-dioxin-treated conditions. DNA microarray analysis was performed based on observed changes in lipid metabolism-related factors. The results showed fluctuations in the expression of numerous genes. Real-time RT-PCR confirmed the decreased expression levels of the cytochrome P450 4a (Cyp4a) subfamily, known to be involved in fatty acid ω- and ω-1 hydroxylation. Furthermore, peroxisome proliferator-activated receptor-α (Pparα) and retinoid-X-receptor-α (Rxrα), which form a heterodimer with Pparα to promote gene expression, were simultaneously reduced. This indicated that reduced Cyp4a expression was mediated via decreased Pparα and Rxrα. In line with this finding, increased levels of leukotrienes and prostaglandins were detected. Conversely, decreased hydrogen peroxide levels and reduced superoxide dismutase (SOD) activity supported the suppression of the renal expression of Sod1 and Sod2 in Selenbp1-deficient mice. Therefore, we infer that ablation of Selenbp1 elicits oxidative stress caused by increased levels of superoxide anions, which alters lipid metabolism via the Pparα pathway. 相似文献
5.
Maud Sabine Cansell Aurélie Battin Pascal Degrace Joseph Gresti Pierre Clouet Nicole Combe 《Lipids》2009,44(3):237-247
The study was undertaken to determine whether eicosapentaenoic acid (EPA, 20:5 n-3) and docosahexaenoic acid (DHA, 22:6 n-3),
esterified in phospholipids (PL) as liposomes or in triglycerides (TG) as oil, exhibited comparable fates in liver lipids
and whether these fates were associated with gene expressions related to fatty acid (FA) metabolism. PL and TG mixtures with
close contents in EPA and DHA were administered to rats over 2 weeks. Most relevant events occurred after 3 days for both
treatments. At that time, liposomes, compared with oil, increased the liver content in PL with a FA composition enriched in
n-6 FA, comparable in DHA and much lower in EPA. Moreover, liposomes increased the activity and mRNA levels of carnitine palmitoyltransferase
(CPT) I. In contrast, fish oil exerted opposite effects on CPT I and increased the genic expression of lipogenic enzymes.
Liposomes, unlike fish oil, apparently increased the mRNA levels of acyl-CoA oxidase and the activity of the peroxisomal FA-oxidising
system. Concomitantly, mRNA levels of hepatic lipoprotein receptors were increased with both diets, but intracellular proteins
involved in free FA uptake and lipid synthesis were up-regulated only with liposome-treated rats. The quasi absence of EPA
in hepatic PL of liposome-treated rats on the short term could result from increased β-oxidation activities through metabolic
regulations induced by more available free EPA and other PUFA. 相似文献
6.
7.
Flaminia Ferri Simone Carotti Guido Carpino Monica Mischitelli Alfredo Cantafora Antonio Molinaro Maria Eva Argenziano Simona Parisse Alessandro Corsi Mara Riminucci Quirino Lai Gianluca Mennini Gustavo Spadetta Francesco Pugliese Massimo Rossi Sergio Morini Eugenio Gaudio Stefano Ginanni Corradini 《International journal of molecular sciences》2021,22(11)
In nonalcoholic steatohepatitis animal models, an increased lipid droplet size in hepatocytes is associated with fibrogenesis. Hepatocytes with large droplet (Ld-MaS) or small droplet (Sd-MaS) macrovesicular steatosis may coexist in the human liver, but the factors associated with the predominance of one type over the other, including hepatic fibrogenic capacity, are unknown. In pre-ischemic liver biopsies from 225 consecutive liver transplant donors, we retrospectively counted hepatocytes with Ld-MaS and Sd-MaS and defined the predominant type of steatosis as involving ≥50% of steatotic hepatocytes. We analyzed a donor Patatin-like phospholipase domain-containing protein 3 (PNPLA3) rs738409 polymorphism, hepatic expression of proteins involved in lipid metabolism by RT-PCR, hepatic stellate cell (HSC) activation by α-SMA immunohistochemistry and, one year after transplantation, histological progression of fibrosis due to Hepatitis C Virus (HCV) recurrence. Seventy-four livers had no steatosis, and there were 98 and 53 with predominant Ld-MaS and Sd-MaS, respectively. In linear regression models, adjusted for many donor variables, the percentage of steatotic hepatocytes affected by Ld-MaS was inversely associated with hepatic expression of Insulin Induced Gene 1 (INSIG-1) and Niemann-Pick C1-Like 1 gene (NPC1L1) and directly with donor PNPLA3 variant M, HSC activation and progression of post-transplant fibrosis. In humans, Ld-MaS formation by hepatocytes is associated with abnormal PNPLA3-mediated lipolysis, downregulation of both the intracellular cholesterol sensor and cholesterol reabsorption from bile and increased hepatic fibrogenesis. 相似文献
8.
9.
Short‐Chain Fatty Acids Enhance the Lipid Accumulation of 3T3‐L1 Cells by Modulating the Expression of Enzymes of Fatty Acid Metabolism 下载免费PDF全文
Short‐chain fatty acids (SCFA) such as acetic acid, propionic acid, and butyric acid are produced by fermentation by gut microbiota. In this paper, we investigate the effects of SCFA on 3T3‐L1 cells and the underlying molecular mechanisms. The cells were treated with acetic acid, propionic acid, or butyric acid when cells were induced to differentiate into adipocytes. MTT assay was employed to detect the viability of 3T3‐L1 cells. Oil Red O staining was used to visualize the lipid content in 3T3‐L1 cells. A triglyceride assay kit was used to detect the triacylglycerol content in 3T3‐L1 cells. qRT‐PCR and Western blot were used to evaluate the expression of metabolic enzymes. MTT results showed that safe concentrations of acetic acid, propionic acid, and butyric acid were less than 6.4, 3.2, and 0.8 mM, respectively. Oil Red O staining and triacylglycerols detection results showed that treatment with acetic acid, propionic acid, and butyric acid accelerated the 3T3‐L1 adipocyte differentiation. qRT‐PCR and Western blot results showed that the expressions of lipoprotein lipase (LPL), adipocyte fatty acid binding protein 4 (FABP4), fatty acid transporter protein 4 (FATP4), and fatty acid synthase (FAS) were significantly increased by acetic acid, propionic acid, and butyric acid treatment during adipose differentiation (p < 0.05). In conclusion, SCFA promoted lipid accumulation by modulating the expression of enzymes of fatty acid metabolism. 相似文献
10.
11.
12.
Wei Li Ehab Osman Claes Forssell Xi-Ming Yuan 《International journal of molecular sciences》2022,23(12)
(1) Background: Protease-activated receptor 1 (PAR1) has regulatory functions in inflammation, atherogenesis, and atherothrombosis. Chronic iron administration accelerates arterial thrombosis. Intraplaque hemorrhage and hemoglobin catabolism by macrophages are associated with dysregulated iron metabolism and atherosclerotic lesion instability. However, it remains unknown whether expressions of PAR1 in human atherosclerotic lesions are related to plaque severity, accumulation of macrophages, and iron-related proteins. We investigated the expression of PAR1 and its relation to the expression of ferritin and transferrin receptors in human carotid atherosclerotic plaques and then explored potential connections between their expressions, plaque development, and classical risk factors. (2) Methods: Carotid samples from 39 patients (25 males and 14 females) were immunostained with PAR1, macrophages, ferritin, and transferrin receptor. Double immunocytochemistry of PAR1 and ferritin was performed on THP-1 macrophages exposed to iron. (3) Results: PAR1 expression significantly increases with the patient’s age and the progression of human atherosclerotic plaques. Expressions of PAR1 are significantly correlated with the accumulation of CD68-positive macrophages, ferritin, and transferrin receptor 1 (TfR1), and inversely correlated with levels of high-density lipoprotein. In vitro, PAR1 is significantly increased in macrophages exposed to iron, and the expression of PAR1 is colocalized with ferritin expression. (4) Conclusions: PAR1 is significantly related to the progression of human atherosclerotic lesions and the patient’s age. PAR1 is also associated with macrophage infiltration and accumulation of iron metabolic proteins in human atherosclerotic lesions. Cellular iron-mediated induction of PAR1 and its colocalization with ferritin in macrophages may further indicate an important role of cellular iron in atherothrombosis. 相似文献
13.
14.
Janusz Strychalski Andrzej Gugoek Zofia Antoszkiewicz Dorota Fopp-Bayat Edyta Kaczorek-ukowska Anna Snarska Grzegorz Zwierzchowski Angelika Krl-Grzymaa Paulius Matusevi
ius 《International journal of molecular sciences》2022,23(18)
This study investigated the effect of the BCO2 genotype and the addition of Aztec marigold flower extract to rabbit diets on the expression of BCO1, BCO2, LRAT, and TTPA genes in the liver. The levels of lutein, zeaxanthin, β-carotene, retinol, and α-tocopherol in the liver and blood serum of rabbits, as well as plasma biochemical parameters and serum antioxidant enzyme activities were also determined. Sixty male Termond White growing rabbits were divided into three groups based on their genotype at codon 248 of the BCO2 gene (ins/ins, ins/del and del/del); each group was divided into two subgroups: one subgroup received a standard diet, and the other subgroup was fed a diet supplemented with 6 g/kg of marigold flower extract. The obtained results indicate that the BCO2 genotype may affect the expression levels of BCO1 and BCO2 genes in rabbits. Moreover, the addition of marigold extract to the diet of BCO2 del/del rabbits may increase the expression level of the BCO2 gene. Finally, an increase in the amount of lutein in the diet of rabbits with the BCO2 del/del genotype contributes to its increased accumulation in the liver and blood of animals without compromising their health status or liver function. 相似文献
15.
Helgit Eisner Lina Riegler-Berket Carlos Francisco Rodriguez Gamez Theo Sagmeister Gabriel Chalhoub Barbara Darnhofer P J Jazleena Ruth Birner-Gruenberger Tea Pavkov-Keller Guenter Haemmerle Gabriele Schoiswohl Monika Oberer 《International journal of molecular sciences》2022,23(21)
Members of the carboxylesterase 2 (Ces2/CES2) family have been studied intensively with respect to their hydrolytic function on (pro)drugs, whereas their physiological role in lipid and energy metabolism has been realized only within the last few years. Humans have one CES2 gene which is highly expressed in liver, intestine, and kidney. Interestingly, eight homologous Ces2 (Ces2a to Ces2h) genes exist in mice and the individual roles of the corresponding proteins are incompletely understood. Mouse Ces2c (mCes2c) is suggested as potential ortholog of human CES2. Therefore, we aimed at its structural and biophysical characterization. Here, we present the first crystal structure of mCes2c to 2.12 Å resolution. The overall structure of mCes2c resembles that of the human CES1 (hCES1). The core domain adopts an α/β hydrolase-fold with S230, E347, and H459 forming a catalytic triad. Access to the active site is restricted by the cap, the flexible lid, and the regulatory domain. The conserved gate (M417) and switch (F418) residues might have a function in product release similar as suggested for hCES1. Biophysical characterization confirms that mCes2c is a monomer in solution. Thus, this study broadens our understanding of the mammalian carboxylesterase family and assists in delineating the similarities and differences of the different family members. 相似文献
16.
Aleksey M. Krasnyi Alsu A. Sadekova Tatyana Y. Smolnova Vyacheslav V. Chursin Natalya A. Buralkina Vladimir D. Chuprynin Ekaterina Yarotskaya Stanislav V. Pavlovich Gennadiy T. Sukhikh 《International journal of molecular sciences》2022,23(18)
The aim of this study was to evaluate the levels of ten energy metabolism factors: C-peptide, ghrelin, GIP, GLP-1, glucagon, insulin, leptin, PAI-1 (total), resistin, and visfatin, and to determine the expression of GLP1R receptors, CD10, CD26 proteases, and pro-inflammatory marker CD86 by macrophages in the peritoneal fluid (PF) in patients with endometriosis. The study included 54 women with endometriosis and a control group of 30 women with uterine myoma without signs of endometriosis. The levels of factors in PF were assessed by a multiplex method. Expression of GLP1R receptors, CD10, CD26 proteases, and CD86 by macrophages was evaluated using flow cytometry. It was found that in women with endometriosis, the concentrations of ghrelin, GLP-1, glucagon, and visfatin in PF were reduced (p = 0.007, p = 0.009, p = 0.002, p = 0.008, respectively). At the same time, there was a noted increase in the CD10 protease expression by peritoneal macrophages (p = 0.044). Correlation analysis showed a positive correlation of ghrelin and GLP-1 levels with CD86 macrophage expression (p = 0.044, p = 0.022, respectively) in the study group; a positive correlation was also found between the levels of GLP-1, glucagon, and visfatin with CD26 macrophage expression (p = 0.041, p = 0.048, p = 0.015, respectively) in PF. No correlations were found in the control group. These results indicate that a decrease in the levels of ghrelin, GLP-1, glucagon, and visfatin in PF may contribute to endometriosis development through their impact on the expression of pro-inflammatory markers of PF macrophages. 相似文献