共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
In this paper, we propose a novel framework for multi-label classification, which directly models the dependencies among labels using a Bayesian network. Each node of the Bayesian network represents a label, and the links and conditional probabilities capture the probabilistic dependencies among multiple labels. We employ our Bayesian network structure learning method, which guarantees to find the global optimum structure, independent of the initial structure. After structure learning, maximum likelihood estimation is used to learn the conditional probabilities among nodes. Any current multi-label classifier can be employed to obtain the measurements of labels. Then, using the learned Bayesian network, the true labels are inferred by combining the relationship among labels with the labels? estimates obtained from a current multi-labeling method. We further extend the proposed multi-label classification method to deal with incomplete label assignments. Structural Expectation-Maximization algorithm is adopted for both structure and parameter learning. Experimental results on two benchmark multi-label databases show that our approach can effectively capture the co-occurrent and the mutual exclusive relation among labels. The relation modeled by our approach is more flexible than the pairwise or fixed subset labels captured by current multi-label learning methods. Thus, our approach improves the performance over current multi-label classifiers. Furthermore, our approach demonstrates its robustness to incomplete multi-label classification. 相似文献
3.
结合实际应用背景, 针对各类样本服从高斯分布的监督学习情形, 提出了构造Fisher核的新方法. 由于利用了样本中的类别信息, 该方法用极大似然估计代替EM算法估计GMM参数, 有效降低了Fisher核构造的时间复杂度. 结合核Fisher分类法, 上述方法在标准人脸库上的仿真实验结果显示, 用所提方法所构造的Fisher核不仅时间复杂度低, 且识别率也优于传统的高斯核与多项式核. 本文的研究有利于将Fisher 核的应用从语音识别领域拓展到图像识别等领域. 相似文献
4.
根据结点的属性和链接关系,现实世界中的复杂网络大多可分为同配网络和异配网络,社区结构在这两类网络中均普遍存在. 准确地挖掘出两种不同类型网络的社区结构具有重要的理论意义和广泛的应用领域.由于待处理的网络类型通常未知, 因而难以事先确定应当选择何种类型的网络社区挖掘算法才能获得有意义的社区结构. 针对该问题, 本文提出了广义网络社区概念,力图将同配和异配网络社区结构统一起来. 本文提出了随机网络集成模型, 进而提出了广义网络社区挖掘算法G-NCMA. 实验结果表明: 该算法能够在网络类型未知的前提下准确地挖掘出有意义的社区结构, 并能分析出所得社区的类型特征. 相似文献
5.
推断数据间存在的因果关系是很多科学领域中的一个基础问题.然而现在暂时还没有快速有效的方法对缺失数据进行因果推断。为此,文中提出一种基于加性噪声模型下适应缺失数据的因果推断算法.该算法是基于加性噪声模型下利用最大似然估计法结合加权样本修复数据的思想构造以似然函数形式的模型评分函数,并以此度量模型相对于缺失数据集的优劣程度,通过迭代学习确定因果方向.每次迭代学习包括使用参数修复数据和在修复后的完整数据集下估计参数.该方法既解决了加性噪声模型中映射函数的参数学习困难性问题,又避免了现有学习方法所存在的主要问题。实验表明,在数据缺失比例扩大的情况下该算法仍具有较高识别能力. 相似文献
6.
7.
This paper proposes linear and nonlinear filters for a non-Gaussian dynamic system with an unknown nominal covariance of the output noise. The challenge of designing a suitable filter in the presence of an unknown covariance matrix is addressed by focusing on the output data set of the system. Considering that data generated from a Gaussian distribution exhibit ellipsoidal scattering, we first propose the weighted sum of norms(SON)clustering method that prioritizes nearby points, reduces distant... 相似文献
8.
9.
为克服“胜者全得”对传网络的缺陷,提出使用基于软竞争机制的对传网络.这样增加了网络的训练复杂度.为此,把竞争层中隐单元的输出作为未观察到的缺省随机变量,使用EM算法对基于软竞争的对传网络进行训练,降低训练复杂度,加快网络的收敛速度.在实现EM算法的M步时,根据基于软竞争机制对传网络竞争层的特点,对EM算法实现进行改进,没有使用常用的迭代重新加权最小二乘算法,而利用样本加权平均求取隐层单元的权值向量,使EM算法更加简单易行,收敛速度快.仿真实验结果表明,基于软竞争机制的对传网络具有很好的泛化性能,特别在模式分类上具有很好的实际应用价值. 相似文献
10.
针对现有医学影像分类方法对临床不同类别影像特征描述效果不一致,且尺度变化敏感的问题,提出一种基于尺度空间提取多特征进行融合的分类方法。首先构建高斯差分尺度空间,然后在尺度空间中分别从灰度、纹理、形状、频域四种互补的角度描述医学影像,最后基于最大似然估计理论构建决策级特征融合模型,实现医学影像分类。严格依照IRMA医学影像类别编码标准选择实验数据,结果表明所提方法相对已有方法分类的平均F1值得到了5%~20%不同程度的提高, 更全面描述医学影像信息, 避免了特征降维造成的信息损失,有效提高了分类的准确率,具有临床应用价值。 相似文献
11.
一类图像的特征及其分布在很大程度上表达了该类的主要信息.根据这一思想,结合图像中的像素信息及形状信息提出一种类图像识别方法.对于一类给定的样本图像,首先提取每一幅图像的显著特征,根据特征分布提取特征区域;然后对所有的特征区域进行聚类得到特征词典,基于特征词及形状信息建模,同时采用最大似然估计的方法进行学习得到模型参数;最后结合特征词模型及形状模型对测试图像进行识别.实验结果表明,该方法能够有效地对2类图像进行分类和识别,同时对多数类图像也能进行较为准确的分类和识别. 相似文献
12.
J. AlMutawa 《International journal of systems science》2016,47(11):2733-2744
The objective of this paper is to develop a robust maximum likelihood estimation (MLE) for the stochastic state space model via the expectation maximisation algorithm to cope with observation outliers. Two types of outliers and their influence are studied in this paper: namely,the additive outlier (AO) and innovative outlier (IO). Due to the sensitivity of the MLE to AO and IO, we propose two techniques for robustifying the MLE: the weighted maximum likelihood estimation (WMLE) and the trimmed maximum likelihood estimation (TMLE). The WMLE is easy to implement with weights estimated from the data; however, it is still sensitive to IO and a patch of AO outliers. On the other hand, the TMLE is reduced to a combinatorial optimisation problem and hard to implement but it is efficient to both types of outliers presented here. To overcome the difficulty, we apply the parallel randomised algorithm that has a low computational cost. A Monte Carlo simulation result shows the efficiency of the proposed algorithms. 相似文献
13.
14.
机器人的定位在运动控制系统和任务执行环节起着至关重要的作用,为了提高机器人在特殊环境中作业的定位精度,设计了一种基于无线传感器网络的机器人高精度定位系统。在微处理器ATmega1280的硬件平台上采用芯片NanoPAN5375接收信号强度指示(RSSI)进行测距定位,并利用对称双边双路测距和极大似然估计算法大大提高了定位精度;同时,使用基于轮询的时分多址接入协议和表驱动簇路由协议,解决了多机器人协同作业定位问题,并使系统在网络性能设计上得到了平衡;通过在60m×60m区域内的实验表明,该系统工作稳定可靠,测量的相对定位误差小于0.25m,具有较高的定位精度,适用于机器人在矿井搜救、核泄漏检测和火山探索等特殊环境下的定位需要。 相似文献
15.
16.
图像分类算法的性能受限于视觉信息的多样性和背景噪声的影响,现有研究通常采用跨模态约束或异构特征对齐算法学习可判别力强的视觉表征.然而,模态异构带来的特征分布差异等问题限制了视觉表征的有效学习.针对该问题,提出一种基于跨模态语义信息推理和融合的图像分类框架(CMIF),引入图像语义描述及统计先验知识作为特权信息,使用特权信息学习范式在模型训练阶段指导图像特征从视觉空间向语义空间映射,提出类感知的信息选择算法(CIS)学习图像的跨模态增强表征.针对表征学习中的异构特征差异性问题,使用部分异构对齐算法(PHA)实现视觉特征与特权信息中提取的语义特征的跨模态对齐.为进一步在语义空间中抑制视觉噪声带来的干扰,提出基于图融合的CIS算法选取重构语义表征中的关键信息,从而形成对视觉预测信息的有效补充.在跨模态分类数据集VireoFood-172和NUS-WIDE上的实验表明, CMIF能够学习鲁棒的图像语义特征,并且能够作为通用框架在基于卷积的ResNet-50和基于Transformer架构的ViT图像分类模型上取得稳定的性能提升. 相似文献
17.
In fault diagnosis intermittent failure models are an important tool to adequately deal with realistic failure behavior. Current model-based diagnosis approaches account for the fact that a component cj may fail intermittently by introducing a parameter gj that expresses the probability the component exhibits correct behavior. This component parameter gj, in conjunction with a priori fault probability, is used in a Bayesian framework to compute the posterior fault candidate probabilities. Usually, information on gj is not known a priori. While proper estimation of gj can be critical to diagnostic accuracy, at present, only approximations have been proposed. We present a novel framework, coined Barinel, that computes estimations of the gj as integral part of the posterior candidate probability computation using a maximum likelihood estimation approach. Barinel's diagnostic performance is evaluated for both synthetic systems, the Siemens software diagnosis benchmark, as well as for real-world programs. Our results show that our approach is superior to reasoning approaches based on classical persistent failure models, as well as previously proposed intermittent failure models. 相似文献
18.
Pierre A Devijver 《Pattern recognition letters》1985,3(6):369-373
In this note, we examine the forward-backward algorithm from the computational viewpoint of the underflow problem inherent in Baum's (1972) original formulation. We demonstrate that the conversion of Baum's computation of joint likelihoods into the computation of posterior probabilities results in essentially the same algorithm, except for the presence of a scaling factor suggested by Levinson et al. (1983) on rather heuristic grounds. The resulting algorithm is immune to the underflow problem, and Levinson's scaling method is given a theoretical justification. We also investigate the relationship between Baum's algorithm and the recent algorithms of Askar and Derin (1981) and Devijver (1984). 相似文献
19.
20.
联合观察数据和扰动数据学习因果网络是一种基于扰动的机器学习方法, 通过扰动学习可以利用少量样本发现网络中的因果关系, 扰动对于因果关系的影响主要体现在网络参数方面。提出了一种基于灵敏性分析的因果网络参数的扰动学习算法(intervention learning of parameter sensitivity analysis, ILPSA)。对于给定的先验网络, ILPSA算法利用联合树推理算法生成灵敏性函数, 通过对灵敏性函数的参数重要性分析提出扰动结点的一种主动选取方法; 对扰动结点的主动干扰产生扰动数据, 然后联合观察数据和扰动数据, 利用最大似然估计(maximum likelihood estimation, MLE)方法学习因果网络的参数, 并利用KL距离对学习结果进行评价。算法比较和实验结果表明, ILPSA算法的学习结果明显好于随机选择扰动结点和无扰动情况下的方法, 特别在样本较小的情况下优势更明显。 相似文献