首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《硅酸盐学报》2021,49(9):1853-1860
多孔氧化铝陶瓷具有耐高温、耐腐蚀、低热导率等众多优异的性能,在工业隔热领域的需求持续增加。采用数字光处理(DLP)3D打印技术制备了实心点阵和空心点阵2种不同构型的氧化铝陶瓷坯体,在1550℃的最佳烧结温度下保温4 h烧结出性能稳定的氧化铝陶瓷。结果表明,实心点阵比空心点阵具有更大的抗压强度,实心点阵的最大抗压强度为4.80 MPa。空心点阵的最大抗压强度为1.59 MPa。力学测试结果与力学模拟仿真结果具有一致性。DLP技术成形的空心点阵结构氧化铝陶瓷将来可用于工业隔热应用领域。  相似文献   

2.
3D打印技术因其操作简单便捷、成型快速灵活、可制备复杂结构的器件等优点,在精密陶瓷零件制造方面具有广泛应用。本文根据3D打印陶瓷的材料形态综述不同3D打印技术在陶瓷制备方面的特点,重点介绍了陶瓷3D打印成型技术中直写式3D打印、光固化3D打印、喷墨3D打印等技术所涉及的粘结剂、分散剂等组分的应用及作用机理,并对水基和非水基两种类型的添加剂组分进行总结和探讨,以期为3D打印技术制备高性能陶瓷样件提供参考。  相似文献   

3.
与传统加工方法相比,光固化3D打印技术具有个性化、定制化、高分辨率等优点,可满足陶瓷精细结构的成型,在陶瓷材料加工方面展示出很大的潜力.这里首先介绍了光固化3D打印技术及常见的陶瓷材料,从陶瓷浆料制备、素坯热处理工艺方面进行讨论.同时对该技术在生物医学领域特别是在骨科、齿科中的应用进行总结.  相似文献   

4.
随着陶瓷3D打印技术的发展,3D打印高性能陶瓷越来越受关注,在航空航天领域得到快速应用.通过研究分散剂、浆料pH、氧化硅粉体粒径和固相含量对浆料粘度和流动性的影响,可制备出粘度低、固相含量高、流动性好的陶瓷浆料.测试了不同固相含量对SiO2陶瓷的弯曲强度、烧成收缩率、气孔率和致密度的影响.结果表明:在68vol%的固相含量条件下,烧结后SiO2陶瓷的致密度达到74.32%,烧成收缩率为0.95%.  相似文献   

5.
近年来随着社会科技的快速发展,在高性能陶瓷成型制造领域,3D打印技术具有广泛的发展前景,对于克服传统陶瓷加工和生产过程中遇到的技术瓶颈具有推进作用,有助于开辟陶瓷复杂零部件应用的新途径。本文针对近年来发展较快的光固化成型、选择性激光烧结、叠层实体制造技术等3D打印技术在陶瓷领域的研究进展进行分析,最后,总结出目前陶瓷3D打印技术所面临的困难与挑战。  相似文献   

6.
陶瓷型芯在航空发动机空心涡轮叶片的熔模铸造中起到关键作用。3D打印技术作为新一代的成型技术,具有无需模具、制造周期短、精度高等优点,正在逐渐替代传统的陶瓷型芯制备工艺。本文总结了光固化技术、选择性激光烧结、直写成型技术和分层挤出成型等目前在陶瓷型芯领域使用较多的3D打印技术,针对3D打印陶瓷型芯打印精度低、力学性能与气孔率适配性差、结构性能各向异性等局限性探讨了性能优化研究现状,并对该领域的发展进行了展望。  相似文献   

7.
本文采用溶胶-凝胶法制备了适用于直写打印的拟薄水铝石凝胶,通过改变拟薄水铝石含量以及羟乙基纤维素含量来调控凝胶的流变性,并评价了凝胶的打印性能.针对凝胶坯体干燥所面临的挑战,创新性地提出了多步液相介质干燥方法,采用低分子量聚乙二醇作为干燥介质,乙酸乙酯作为萃取剂,在26 h内实现了厚度为10 mm的凝胶坯体的干燥,并且...  相似文献   

8.
利用光固化技术制备的生物玻璃陶瓷骨植入物在骨修复领域具有许多优势,然而生物玻璃陶瓷受粉体粒度的影响,在光固化打印工艺、结构、力学性能和生物性能等方面存在较大的差异。本文以光固化3D打印过程中粒度的变化为切入点,制备了两种不同粒度粉体的生物玻璃陶瓷浆料,分别对生物玻璃陶瓷浆料的稳定性、流变特性和固化特性进行了表征,根据TG-DSC曲线绘制了脱脂烧结曲线并对骨支架的表面质量、结构和力学性能进行了评价,最后通过颅骨修复试验对降解性能进行了分析。结果表明:小粒度粉体的浆料稳定性较好,黏度较高,对应的固化厚度和过固化宽度也较小;小粒度粉体制备的骨支架表面质量、结构致密化程度和弯曲强度均优于大粒度粉体制备的骨支架,但降解速率较低,植入体内2个月后有新骨长入骨支架孔隙。本研究对不同粒度粉体的生物玻璃陶瓷骨支架制备具有指导意义,有助于推动基于粒度分布的梯度可控降解骨支架的开发和应用。  相似文献   

9.
针对光固化氧化铝陶瓷3D打印过程中的浆料粘度及制件性能,通过旋转粘度计测量得到不同分散剂及氧化铝粉体级配条件下的陶瓷浆料的粘度,优化了分散剂的选择及氧化铝粉体级配;通过对光固化3D打印、脱脂和烧结氧化铝陶瓷样件的弯曲强度和收缩率、致密度测试,得到了粉体级配前后不同固相含量氧化铝的抗弯曲性能、收缩率及致密度.研究结果表明,光固化氧化铝陶瓷3D打印浆料制备过程,选择PMA25作为其分散剂,选择10μm(60wt%)+5μm(10wt%)+2μm(30wt%)的粉体级配的氧化铝粉体,可以有效降低浆料粘度.同时,通过选择不同粒径的氧化铝陶瓷粉体,可以减小粉体之间的间隙,增加了粉体之间的有效粘接面积,使得氧化铝粉体之间的粘接更加牢固,陶瓷制件的抗弯曲性能更好、致密度更高.  相似文献   

10.
对3D打印用氧化锆浆料的分散制备方法进行研究。通过研究改性聚丙烯酸铵分散剂用量、p H值、固相含量对氧化锆浆料的黏度、Zeta电位的影响,可获得以乙醇为分散介质的高分散性、低黏度、高固相的氧化锆浆料。实验结果表明:当固相含量为50wt%、p H值为10.0、分散剂用量为3wt%时氧化锆浆料能达到良好的分散效果。  相似文献   

11.
氧化铝泡沫陶瓷浆料的研究   总被引:1,自引:1,他引:0       下载免费PDF全文
有机泡沫陶瓷浸渍工艺中,浆料性能对泡沫陶瓷的显微结构与力学性能具有重要影响.本文研究了球磨时间和浆料固相含量对氧化铝泡沫陶瓷浆料的稳定性、流变性和颗粒粒度分布的影响.实验结果表明,球磨时间4 h后,氧化铝浆料的沉降度降低,粘度适宜,氧化铝颗粒中位径较小,表明浆料稳定性提高,流变性改善,可保证浆料在泡沫中的有效浸渍.当固相含量在25%~35%之间时,浆料的性能较优.实验证明球磨时间及固相含量对浆料的性能有重要影响.  相似文献   

12.
有机硅材料具有良好的生物相容性、化学稳定性和力学性能等,在生物医用、包装与交通运输等方面应用广泛。传统工艺生产有机硅制品时间长、成本高,而且无法做到个性化生产。有机硅的3D打印是用3D打印技术加工成型有机硅材料制品,它能够实现有机硅产品的快速、个性化生产。介绍了直接有机硅3D打印中光固化3D打印与基于挤出的3D打印2种技术在材料、打印工艺方面的研究进展。  相似文献   

13.
立体光固化成型技术是一种生产高精度、高性能陶瓷部件的新兴增材制造工艺。制备具有良好流动性和高固相含量的陶瓷浆料是立体光固化增材制造工艺的优势。本文讨论了固相含量、单体、分散剂、粉体级配等因素对浆料流变性能的影响规律,总结了目前配制高固相含量和低黏度光固化Al2O3陶瓷浆料的材料选择原则,归纳了制备高固相含量、低黏度Al2O3陶瓷浆料的指导方法,指出了高性能光固化Al2O3陶瓷浆料开发的主要趋势和面临的挑战。  相似文献   

14.
15.
16.
综述了近几年国内外对常见的打印材料如环氧丙烯酸酯、聚酯丙烯酸酯及不饱和聚酯等树脂的改性研究。分析比较了国内外在光固化树脂方面的发展趋势,对国内发展存在的问题进行分析及对未来发展进行展望。  相似文献   

17.
采用石墨烯和氧化石墨烯(GO)作为增强体、无水乙醇作为稀释剂,对紫外光固化树脂进行物理改性。通过3D打印制备石墨烯增强光固化树脂试样,研究了石墨烯和GO添加量对光固化树脂力学性能的影响。结果表明,与石墨烯相比,GO含有更多的极性含氧基团,能与极性光固化树脂之间形成非共价键,改善了GO在光固化树脂中的均匀分散性。当GO添加量为0.15%时,与纯树脂相比,拉伸强度从27.99 MPa提高至37.31 MPa,提高了约32.30%,冲击强度从17.79 kJ/m2提高至25.48 kJ/m2,提高了约43.00%;与添加0.05%石墨烯相比,拉伸强度和冲击强度分别提高了23.67%和13.20%。因此,添加GO对提高光固化树脂的力学性能效果更佳。  相似文献   

18.
快速成型(RP)技术是近几十年发展起来的一项新兴技术,3D打印就是其中一种非常有前途的,被誉为推动了第三次工业革命快速发展的快速成型技术。本文就3D打印之一的光固化3D打印进行简单介绍,对光固化3D打印材料的组分、特点进行较详细的阐述,并对光固化3D打印高分子材料未来予以展望。  相似文献   

19.
综述了近几年国内外对常见的打印材料如环氧丙烯酸酯、聚酯丙烯酸酯及不饱和聚酯等树脂的改性研究。分析比较了国内外在光固化树脂方面的发展趋势,对国内发展存在的问题进行分析及对未来发展进行展望。  相似文献   

20.
近年来,三维连续网络结构的陶瓷/金属复合材料由于兼具陶瓷材料的耐磨、高强、高硬、抗氧化、耐蚀及钢铁材料的导热性及良好的韧性受到人们的广泛关注。三维连续网络结构的陶瓷/金属复合材料的陶瓷结构的构建是制备复合材料的难题。3D打印技术突破了传统的加工模式,不依赖复杂模具和机械加工,并可根据材料不同的性能要求,开发出不同结构的陶瓷骨架,这将使陶瓷/金属复合材料领域发生巨大变化。本文介绍了陶瓷3D 打印技术的原理、分类、工艺特点及研究进展,并对3D打印技术未来的发展方向进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号