首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以碳酸钠为沉淀剂,乳酸钠为络合剂合成碳酸盐前驱体,950℃烧结制备了Li1.2[Mn0.52-0.5xNi0.20-0.5xCo0.08+x]O2x=0, 0.02, 0.04, 0.06)系列材料,探讨元素含量变化对材料的结构、形貌、充放电性能的影响。研究结果表明:随着x的增大,材料的晶格常数c/a比值增加,层状结构更加完整。当x=0.02时,该材料的充放电性能最优,其首次放电容量为261.0 mA·h/g,0.5C下循环100次后的放电容量仍有189.9 mA·h/g,容量保持率高达98.85%,2C倍率下放电容量最高达到157.6 mA·h/g。进一步增大x值时,由于Co含量的上升,使得更多的Co3+/4+ 2g轨道与O2- 2p轨道发生带隙重叠,从而使得材料的比容量和循环性能下降。  相似文献   

2.
本文采用共沉淀法制备球形Ni0.80Co0.15Al0.05(OH)2.05前驱体,经预氧化后,采用富锂配比在氧气和空气气氛下烧结合成LiNi0.80Co0.15Al0.05O2正极材料.用X射线衍射,扫描电镜和恒电流充放电测试等方法对该材料的结构,形貌及电化学性能进行表征.结果表明:当锂配比为1.15时,氧气和空气中烧结合成的LiNi0.80Co0.15Al0.05O2正极材料的形貌,结构和电化学性能相当.富锂配比方法可在空气气氛下制备出电化学性能优异的LiNi0.80Co0.15Al0.05O2正极材料.0.1 C放电克比容量在200 mA·h/g以上,首次效率在87%左右;1 C放电克比容量在168 mA·h/g以上;800周循环容量保持率在80%以上.  相似文献   

3.
制备锂离子电池正极材料LiNi0.8Co0.2O2通常需要在纯氧气气氛下进行烧结.本工作以硫酸镍,硫酸钴和氢氧化钠为原料,采用并流共沉淀法制备了高密度Ni0.8Co0.2(OH)2前驱体,再采用高温固相反应法在空气中烧结制备了锂离子电池LiNi0.8Co0.2O2正极材料.采用X射线衍射(XRD),扫描电镜(SEM),恒流充放电测试(ECT),循环伏安(CV)与比表面积(BET)测试等方法对目标样品进行了表征,详细考察了烧结条件对材料结构,微观形貌及电化学性能的影响.结果表明,锂/(钴+镍)摩尔比为1.13∶1时,在管式炉中和空气气氛下于第一段烧结温度700 ℃保温9 h,于第二段烧结温度750 ℃保温12 h,合成的材料比表面积适中(0.78 m2/g),具有规则的六边形α-NaFeO2层状结构,晶粒分布均匀,电化学性能最优.在0.5 C充放电倍率下和2.7~4.3 V电压范围内,其首次放电比容量达到153.0 mA·h/g,循环20次后放电比容量仍为150.7 mA·h/g,容量保持率达到98.5%,显示了优异的循环稳定性能,可用做高能量密度动力电池正极材料.  相似文献   

4.
通过溶胶-凝胶-自蔓延燃烧法制备了系列CuxFe3-xO4尖晶石催化剂。采用XRD和XPS表征方法对催化剂晶相结构及表面元素价态进行了分析,考察了CuxFe3-xO4催化甲醛的氧化效率。采用密度泛函理论探究了甲醛吸附在CuFe2O4表面的最稳定构型和吸附机理。结果表明,CuxFe3-xO4催化剂主要由Cu-Fe尖晶石相和部分CuO、Fe2O3相组成。Cu0.5Fe2.5O4催化甲醛氧化效率最佳,在温度高于250℃时氧化效率达到90%以上。甲醛在CuFe2O4(100)表面的吸附属于化学吸附,吸附能为 -107.15 kJ/mol。  相似文献   

5.
该文研究加热和水处理共同作用对PbI2薄膜形貌的调控和对钙钛矿太阳电池性能的影响。使用的钙钛矿体系为(FAPbI31-x(MAPbBr3x,并在两步法工艺基础上对PbI2薄膜进行不同时间加热和短时间水处理可将PbI2薄膜制备成多孔结构。将双重处理后的PbI2薄膜制备成钙钛矿薄膜后,可发现钙钛矿薄膜质量明显提升,表现在:钙钛矿的晶粒尺寸明显增大、结晶性增强、吸光能力提升、载流子传输更快。且此种方式能有效调控钙钛矿薄膜中的PbI2残留量。在器件效率方面,只对PbI2薄膜进行加热处理制备的电池的开路电压、短路电流、填充因子和效率分别为1.05 V、23.12 mA/cm2、73.81%和17.92%,而在最优双重处理工艺下制备的电池的这4个相应的参数分别为1.09 V、24.75 mA/cm2、77.85%和21.10%。  相似文献   

6.
合成了不同Rb掺杂量的钛酸锂(Li4-xRbxTi5O12; x = 0.010, 0.015, 0.020)作为锂离子电池的负极材料。测试结果显示,Rb离子掺杂有效增强了钛酸锂的电子电导率。相同的测试条件下,相比于未掺杂样品和高Rb含量掺杂样品(x = 0.015, 0.020),适量的Rb掺杂钛酸锂(Li3.99Rb0.01Ti5O12; x = 0.010)表现出最优的电化学性能。Li3.99Rb0.01Ti5O12材料表现出161.2 mA∙h/g的初始容量,且在1 C下经过1000次循环后容量保持率可达90.9%。此外,全电池Li3.99Rb0.01Ti5O12 // LiFePO4在0.5 C条件下首次放电容量为144 mA∙h/g,经过150次循环后,容量保持率为78.8%。  相似文献   

7.
利用共沉淀一步法在常温下合成具有高光催化活性的ZnxCd1-xS固溶体光催化剂,用XRD、SEM、XPS、BET、UV-VIS DRS和PL对制备出的ZnxCd1-xS样品进行结构和光学性能的表征,并在模拟太阳光照射下对罗丹明B(RhB)溶液进行降解,评价其光催化活性。结果表明,ZnxCd1-xS对可见光的吸收阀值随Zn含量增加而减少,禁带宽度随之增大;颗粒状ZnxCd1-xS固溶体对罗丹明B具有较高的光催化活性,其中Zn0.8Cd0.2S的光催化性能最优,在90 min内对RhB的降解率达到98.5%,远高于CdS和ZnS光催化剂;经过4次重复使用后,Zn0.8Cd0.2S对RhB的降解率维持在75%以上。Zn0.8Cd0.2S的比表面积和孔隙体积相对于CdS分别增至154.6 m2/g和0.40 cm3/g,其光催化活性显著增强的主要原因是由于其较高的光生电子空穴对的分离效率及较低的复合率。  相似文献   

8.
镍钴锰酸锂(LiNixCoyMn1-x-yO2,NCM)是一种具有高使用容量的三元正极材料,但存在元素混排、相变、热稳定性差、微裂纹等缺陷,导致电池出现容量衰减和安全问题,影响其广泛应用。针对目前三元材料存在的问题,归纳总结了特殊结构与形貌、掺杂、替代、包覆、修饰、复合等改性方法的最新研究进展,探讨了不同方法对材料电化学性能、循环稳定性和安全性的影响,分析比较了不同方法的优缺点。结合材料、电化学、热和力等多学科知识及本课题组利用负热膨胀材料对能源材料改性的研究成果,提出了原位利用电极循环过程中的热调控形变和界面行为改善材料性能的新思路,为解决电池的热失控和应力等安全问题提供参考。  相似文献   

9.
以Li(Ni1/3Co1/3Mn1/3)O2/graphite动力电池为研究对象,在模拟备用电源工况下对动力电池进行交流阻抗测试。通过建立等效电路来研究欧姆阻抗Rs、电荷传递阻抗Rct和扩散阻抗CPEW随不同搁置时间、荷电状态(state of charge,SOC)的变化规律,研究Li(Ni1/3Co1/3Mn1/3)O2/graphite动力电池在备用电源工况下,容量和阻抗的变化趋势。结果表明:随着搁置时间的增加,电池容量衰减1.7%左右。随着搁置时间的增加,不同SOC下的欧姆阻抗Rs具有相同的变化趋势,电荷传递阻抗明显增加。随着SOC的降低,由双电层产生的电荷传递阻抗在逐渐增加。在SOC=0%时,扩散阻抗随搁置时间的增加而增加,在SOC=100%、50%的扩散阻抗有细微的增加。容量衰退和阻抗结果显示出Li(Ni1/3Co1/3Mn1/3)O2/graphite动力电池可以很好地在备用电源工况上使用。  相似文献   

10.
由于等离子体增强化学的气相沉积(PECVD)法制备的SiOxNy薄膜中含有大量H原子,因而具有优异的表面钝化性能。通过在PERC太阳电池的Al2O3/SiNx背钝化叠层中间插入一层SiOxNy薄膜,形成Al2O3/SiOxNy/SiNx结构,可避免SiNx所带的固定正电荷对Al2O3负电荷场钝化效应的负面影响。试验结果表明,硅片少子寿命从原来的130 μs提高至162 μs,电池转换效率增加0.09%。同时,基于Al2O3/SiOxNy/SiNx背钝化的PERC太阳电池的LID也得到了改善,由对照组的1.83%下降到实验组的1.09%。  相似文献   

11.
基于吉布斯自由能最小化原理,采用HSC Chemistry 6.0软件,对污泥化学链气化过程中NOx前驱物(NH3和HCN)与Fe2O3载氧体的氧化还原行为进行了热力学模拟。基于污泥热解实验中NOx前驱物的含量,计算载氧体与污泥的摩尔比(OC/SS)对NH3、HCN以及NH3和HCN混合气氧化过程的影响。热力学模拟结果表明:Fe2O3能显著促进NOx前驱物的氧化和裂解,主要生成N2,几乎无NOx生成;当NH3、HCN以及混合气(NH3和HCN)分别作为还原剂时,其最优OC/SS分别为0.02、0.04和0.05;由于HCN还原性强于NH3,其氧化速率较快。基于Fe2O3/Al2O3混合物(FeAl)载氧体,实验对比了污泥化学链气化与污泥热解过程中NOx前驱物的释放特性,发现Fe2O3能显著降低烟气中NOx前驱物的产率,NH3和HCN产率分别下降32%和62%。实验结果与热力学模拟结果一致。  相似文献   

12.
This paper belongs to a series of three dealing with the latest improvements in the alkaline H2---O2 fuel cells operating under mild conditions thanks to their Raney-Ni-catalysts. The first of these papers describes the benefication of a Ni(OH)2 surface coating on the catalytic activity of Ti-doted Raney-Ni in supported electrodes. This Ni(OH)2 surface coating is produced by carefully optimized oxidation. A Ni(OH)2-content of 5 up to 6wt% increases the attainable current density by the factor 3–4. In addition, the exchange current density is markedly enlarged up to a Ni(OH)2-fraction by 5%, but remains unchanged when further increasing the Ni(OH)2 percentage. Thus, one may conclude that the Ni(OH)2 surface coating improves markedly the charge exchange reaction. On the other side, the surface diffusion of H-atoms on the pore walls to the location of charge exchange reaction is hindered by too much Ni(OH)2.  相似文献   

13.
《Solar Energy》2000,68(6):523-540
Layered LixCoO2 and LixNiO2 thin films (x1) were prepared by a peroxo wet chemistry route from Li(I), Co(II) and Ni(II) acetate precursors and the addition of H2O2. Structural changes during the processing of xerogel to final oxide were followed by X-ray diffraction and infrared spectroscopy. Electrochromic properties were determined with in-situ potentiodynamic, potentiostatic and galvanostatic spectroelectrochemical measurements. Single dipped films with composition Li0.99Co1.01O2 or Li0.94Ni1.06O2 exhibited stable voltammetric response in 1 M LiClO4/propylene carbonate electrolyte after about 60 cycles. The total charge exchanged in a reversible charging/discharging cycle was about ±30 mC cm−2 for Li0.99Co1.01O2 and ±20 mC cm−2 for Li0.94Ni1.06O2 oxide films. Galvanostatic measurements showed that about 1/2 (x0.5) and 2/3 (x0.3) of Li+ ions could be reversibly removed from the structure of Li0.99Co1.01O2 and Li0.94Ni1.06O2 films, respectively. Practical applicability of Li0.99Co1.01O2 and Li0.94Ni1.06O2 oxide films was studied in electrochromic devices with WO3(H+)Li+ormolyteLi0.99Co1.01O2 and WO3(H+)Li+ormolyteLi0.94Ni1.06O2 configuration. The monochromatic transmittance Ts (λ=633 nm) of dark blue coloured devices was extremely low (Ts3%), whereas in bleached state the value reached around Ts70%.  相似文献   

14.
α-Ni(OH)2 is a promising candidate of the currently commercialized β-Ni(OH)2 due to its higher theoretical discharge capacity in alkaline solution; however, its instability and poor conductivity plague the practical application. Herein, we propose α-Ni(OH)2 with Co doping and spherical structure to strengthen the stability and enhance the conductivity and use it as the cathode for nickel-metal hydride batteries. Studies show that proper Co doping promotes the electrochemical reaction between the active materials and the electrolyte due to the spherical α-Ni(OH)2 with enlarged interlayer distance and abundant hole channels, as well as high conductivity of Co, therefore, the obtained spherical α-Ni(OH)2 with 7 mol% Co doping delivers significantly improved discharge capability, which is 384.6 mAh g?1 at 70 mA g?1 (0.2 C), increased by 54.3 mAh g?1 compared with pure α-Ni(OH)2, and at a high current of 5 C, it still gives 269.4 mAh g?1, in contrast 218.5 mA g?1 for the pure α-Ni(OH)2. Besides, the cycling stability of the α-Ni(OH)2 with 7 mol% Co doping maintains 340 cycles at a capacity retention of 80% (1C), which is extended 110 cycles in contrast to the pure α-Ni(OH)2. These results provide the underpinning platform of α-Ni(OH)2 for battery applications with high discharge ability and cycle life.  相似文献   

15.
Gasification of peanut shell, sawdust and straw in supercritical or subcritical water has been studied in a batch reactor with the presence of a series of Raney-Ni and its mixture with ZnCl2 or Ca(OH)2. The main gas products were hydrogen, methane, carbon dioxide, and a small amount of carbon monoxide. Different types of Raney-Ni, containing different metal components such as Fe, Mo or Cr, have different influences on the gasification yield and hydrogen selectivity. The catalysis effect can be improved obviously by adding ZnCl2 or Ca(OH)2. Increasing the reaction temperature or adding ZnCl2 and Ca(OH)2 could improve the mass of H2 in gas products and reduce the mass of CH4 and CO2 at the same time. The possible mechanism is that ZnCl2 can decompose the biomass particle by accelerating cellulose hydrolyzation in high-temperature water, increasing more specific surface to admit catalysts, while Ca(OH)2 can absorb CO2 to produce CaCO3 deposit, which can drop out from the reactant system, and which will drive the reaction to get more hydrogen. With respect to the biomass conversion to gas product and selectivity of H2 at low temperature, the series of Raney-Ni has shown many advantages over other catalysts; thus, this kind of catalyst has great potential to be utilized in the hydrogen industry for the gasification of biomass.  相似文献   

16.
The solid solutions of CexSn1−xO2 incorporated with alumina to form CexSn1−xO2–Al2O3 mixed oxides, by the suspension/co-precipitation method, were used to prepare CuO/CexSn1−xO2–Al2O3 catalysts for the selective oxidation of CO in excess hydrogen. Incorporating Al2O3 increased the dispersion of CexSn1−xO2, but did not change their main structures and did not weaken their redox properties. Doping Sn4+ into CeO2 increased the mobility of lattice oxygen and enhanced the activity of the 7%CuO/CexSn1−xO2–Al2O3 catalyst in the selective oxidation of CO. The selective oxidation of CO was weakened as the doped fraction of Sn4+ exceeded 0.5. Incorporating appropriate amounts of Sn4+ and Al2O3 could obtain good candidates 7%CuO/CexSn1−xO2–Al2O3(20%), 1–x=0.1–0.5, for a preferential oxidation (PROX) unit in a polymer electrolyte membrane fuel cell system for removing CO. Its activity was comparable with, and its selectivity was much larger than, that of the noble catalyst 5%Pt/Al2O3.  相似文献   

17.
Cu(InxGa1−x)2Se3.5 thin films were fabricated by rf sputtering from CuInxGa1−xSe2 and Na mixture target by controlling the mixture ratio. X-ray diffraction analyses show that the structure of Cu(InxGa1−x)2Se3.5, thin films is different from chalcopyrite structure: especially, CuIn2Se3.5 thin films have a defect chalcopyrite structure. The lattice parameters for Cu(InxGa1−x)2Se3.5 thin film are slightly smaller than those for CuInxGa1−xSe2 thin film and linearly decreased with increasing Ga content. The optical absorption coefficients for Cu(InxGa1−x)2Se3.5, thin films exceed 2 × 104 cm−1 in energy region above the fundamental band edge. The band gap for Cu(InxGa1−x)2Se3.5 thin films is larger than that for CuIn.Ga1−x2Se2 with the same Ga content and increased with increasing Ga content.  相似文献   

18.
This paper deals with computer simulation of the PC isotherms of some ZrFe2 type (Zr(Fe1−xCrx)2, Zr1−xTixFe1.4Cr0.6, Zr1−2xMmxTixFe1.4Cr0.6 : x00.4) of hydrogen storage materials. A feasible mathematical model has been developed to simulate the PC isotherms. The randomized variables in the model applied for simulating the PC isotherms of the above-mentioned ZrFe2 type hydrogen storage materials correspond to change in enthalpy (ΔH) and entropy (ΔS) of hydride formation. Several ZrFe2 type materials as in above have been synthesized and their PC isotherms, enthalpy and entropy change has been evaluated experimentally in order to have input data for simulation. A special software was developed to simulate the PC isotherms using the said model. A close match between the experimentally observed and simulated PC isotherms for the above said ZrFe2 type alloys has been obtained.  相似文献   

19.
Electrochemical properties of iron carbide (Fe3C) for use as an alkaline battery anode were investigated during charge–discharge cycles. Results of electrochemical measurements and Mössbauer spectroscopy suggested that Fe3C is oxidized irreversibly to Fe3O4 during discharge processes and that the produced Fe3O4 is subsequently changed to Fe(OH)2 and Fe during the charging process, raising the discharge/charge capacity in further galvanostatic cycles. In addition, the electrode particles were observed to be less than 100 nm in diameter and to be highly dispersed on the surface of carbon black. These phenomena seems to be caused by dissolution and deposition of Fe(OH)2 and Fe via intermediate iron species, leading to exposure of a fresh Fe3C surface to the electrolyte after the second discharge.  相似文献   

20.
为了改善LiNi0.8Co0.15Al0.05O2正极材料的电化学热稳定性能,加入LiFePO4共混制成了LiFePO4/LiNi0.8Co0.15Al0.05O2锂离子电池用混合正极材料。使用X射线衍射(XRD)和扫描电子显微镜(SEM)表征了结构和形貌,测试了电化学性能。结果显示,简单球磨的混合LiFePO4/LiNi0.8Co0.15Al0.05O2正极材料中,纳米LiFePO4粒子包覆在LiNi0.8Co0.15Al0.05O2粒子表面提高了混合正极材料在充放电过程中的电化学稳定性和结构稳定性。LiFePO4/LiNi0.8Co0.15Al0.05O2混合正极材料在50 ℃下循环100周容量保持率为82.0%,明显地优于单一LiNi0.8Co0.15Al0.05O2材料的72.9%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号