首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为探索粉煤灰基地聚物对盐渍土的加固效果,对固化后的土体开展了力学性能和细微观结构的试验,从本质上揭示粉煤灰基地聚物对盐渍土的固化机理。结果表明:随着粉煤灰基地聚物掺量的增加,盐渍固化土的最优干密度下降,最优含水率上升;当掺量从0增至6%时,盐渍固化土的无侧限抗压强度增加了5.5倍,而当掺量为8%时的强度没有明显提升;盐渍土的孔径分布呈双峰分布,随着地聚物掺量的增加,孔隙体积逐渐降低;盐渍固化土的阳离子交换量随粉煤灰基地聚物掺量增加而提高,且与无侧限抗压强度呈现线性相关;在盐渍土中加入粉煤灰基地聚物使土颗粒间的孔隙收缩,黏结性和密实度增强,进而达到固化的效果。本研究成果为粉煤灰基地聚物在盐渍土地区地基加固工程中的设计与施工提供了参考。  相似文献   

2.
为促进再生骨料在半刚性基层中的应用,实现建筑垃圾在公路工程中的资源化利用,本文采用等质量置换法,系统分析了再生骨料掺量(质量分数)为0%、30%、50%、70%、100%时对无机混合料最大干密度、最佳含水率、无侧限抗压强度、抗冻性能的影响,并从微观角度解释了内在影响机理。结果表明:掺入再生骨料降低了无机混合料的最大干密度,增大了最佳含水率;再生骨料可以有效提高无机混合料的无侧限抗压强度和抗冻性能,当再生骨料掺量为70%时提升效果最佳,此时再生骨料无机混合料7、28 d无侧限抗压强度为4.6、6.8 MPa, 28、90 d冻融循环后残留抗压强度比可达82.4%、85.5%。  相似文献   

3.
为研究CaO改性赤泥固化剂固化黄土的力学性能,对不同赤泥掺量、不同养护龄期的固化土进行无侧限抗压强度测试,分析了强度随赤泥掺量、养护龄期的变化规律,提出了赤泥强化因子和龄期强化因子,揭示了无侧限抗压强度的变化机理.结果表明:随着赤泥的增加和养护龄期的增加,无侧限抗压强度逐渐增大;强度随赤泥掺量的增加符合二次函数变化,随龄期的增加符合线性变化规律;当赤泥掺量达到45%~60%时,强度在此区间达到最大值;应用赤泥强化因子和龄期强化因子分析,发现在28~90 d龄期且赤泥掺量为30%~60%时,强度相比水泥固化土可提高2.5~4倍.  相似文献   

4.
为了探究不同龄期下,赤泥改良石灰土的应力-应变-电阻率曲线的变化,测试了试块的初始电阻率、无侧限抗压强度和破坏电阻率,且在无侧限抗压强度测试过程中全程同步检测试块的电阻率变化,采用所得数据绘制应力-应变-电阻率曲线并进行分析.分析结果表明:试块初始电阻率和无侧限抗压强度均随龄期的增加而增加;同赤泥掺量下的应力-应变-电阻率曲线在不同龄期条件下的变化基本一致;在0%赤泥掺量条件下,电阻率会随应力的增加而减小,在即将达到极限应力时会迅速增加;在30%赤泥掺量条件下,电阻率随应力的增大而持续减小并最终保持稳定;破坏电阻率随龄期的增加呈线性上升的趋势.  相似文献   

5.
基于土壤固化技术,将铁水脱硫渣、高炉矿渣微粉、普通硅酸盐水泥与素土按一定比例拌和制备铁水脱硫渣固化土基层材料,通过击实、无侧限抗压强度、劈裂强度等试验对其性能进行测定,并分析物料掺量对铁水脱硫渣固化土力学性能的影响,结果表明:提高铁水脱硫渣掺量和降低矿渣微粉掺量均会使混合料最大干密度增大、最佳含水率下降;铁水脱硫渣固化土基层材料具有较好的力学性能,7 d无侧限抗压强度均大于6 MPa;当矿渣微粉掺量为40%时,铁水脱硫渣固化土基层材料达到力学峰值,道路基层强度最佳。  相似文献   

6.
为保证膨胀土路基力学强度和稳定性,通过室内及现场试验研究了石灰改良膨胀土力学特性及施工含水率。结果表明,膨胀土掺入石灰后,最大干密度降低,最佳含水率增加,利于控制路堤施工质量;随石灰掺量增加,改良膨胀土物理力学特性逐渐改善,且石灰掺量≥6%时,改良膨胀土物理力学特性趋于稳定;石灰改良膨胀土路基压实度在含水率ωop+1.5时达到最大值,含水率≤ωop+1.5时,改良膨胀土无侧限抗压强度及CBR随含水率增加呈线性增大,含水率增加1%,无侧限抗压强度和CBR分别至少提高6.9%和2.6%。建议改良膨胀土最优石灰掺量为6%,施工含水率为ωop+1.5。  相似文献   

7.
以天津外环线洞庭路工程改造项目为依托,分析比对了用不同振实方法对水泥稳定碎石的最大干密度和最佳含水率的影响,同时用两种不同的方法分别成型无侧限试件来比对抗压强度,进一步分析确定水泥在半刚性基层中的最佳掺量,以达到节约成本目的。  相似文献   

8.
以热活化氧化铝赤泥为主要原料制备赤泥地聚物砂浆,对比研究了激发剂种类和掺量对赤泥地聚物力学性能的影响及其合成机理。结果表明,水玻璃、石灰-碱(质量比为2∶1)、石膏-碱(质量比为2∶1)均能改善氧化铝赤泥的反应活性,促进赤泥地聚物的合成,其中水玻璃(氧化硅与氧化钠物质的量比为1.5)的改性效果最为显著。水玻璃、石灰-碱、石膏-碱的最佳掺量分别为20%、7%、10%。水玻璃掺量为20%时,赤泥地聚物砂浆28 d抗压强度和28 d抗折强度分别为32.1 MPa和6.0 MPa。改变激发剂的种类和掺量,可以调整赤泥地聚物砂浆体系的碱度,改变铝硅酸结构的解聚和地聚物的缩聚过程,从而影响其力学性能。  相似文献   

9.
通过击实试验、无侧限抗压强度试验和水稳性试验研究了水泥、粉煤灰掺量对含油污泥热解残渣路基材料性能的影响.结果 表明:随水泥、粉煤灰掺量的增加,最大干密度和最佳含水量均减小.含油污泥热解残渣路基材料的无侧限抗压强度随水泥掺量的增加而增大,考虑经济性和强度值,选择水泥掺量为4%制备路基材料.随粉煤灰掺量的增加(10% ~ 30%),无侧限抗压强度先增大后减小,粉煤灰掺量存在最优值(20%).含油污泥热解残渣路基材料的水稳系数随水泥掺量和龄期的增加而增大.  相似文献   

10.
用燃煤电站脱硫灰、电炉钢渣、矿渣等工业固体废物以及化学激发剂制备出一种新型灰渣胶凝材料-DA固化剂,并对利用该种材料固化广州珠江疏浚淤泥进行了试验研究.研究结果表明,所制备出的胶凝材料28 d净浆和胶砂强度分别为46.0和27.3 MPa;5.00%DA固化剂掺量下淤泥固化土击实试件的最大干密度、最佳含水率、无侧限抗压...  相似文献   

11.
为探究冻融循环作用对粉煤灰加固路基土力学性能影响,对冻融循环次数、含水率、粉煤灰掺量不同的盐渍土开展无侧限抗压试验和三轴剪切试验,研究冻融循环后土体的应力-应变曲线、无侧限抗压强度、黏聚力和内摩擦角的变化情况。使用Design-Expert 8.0软件,研究冻融循环次数、粉煤灰掺量、含水率及各因素交互作用对盐渍土力学性质影响的显著性程度。结果表明:多次冻融循环后,盐渍土无侧限抗压强度、黏聚力和内摩擦角均有下降,经历1~7次冻融循环时,土体各力学参数下降速率较快;随着粉煤灰掺量的增加,盐渍土的内摩擦角、黏聚力、无侧限抗压强度和抗剪强度呈现出先升高后下降的变化趋势。基于显著性分析理论,冻融循环次数与含水率的交互作用对盐渍土无侧限抗压强度和黏聚力的影响较为显著,粉煤灰掺量与冻融循环次数的交互作用仅对无侧限抗压强度影响较为显著。为提高路基土强度及抗冻融的能力,加快粉煤灰综合利用进度,根据软件和公式模拟结果,推荐在路基土中依据质量比掺加15%粉煤灰,并将经历7次冻融循环后压实盐渍土的力学指标作为工程设计参考值。  相似文献   

12.
朱思迪  顾强康  姚志华 《硅酸盐通报》2016,35(10):3112-3118
针对含水率高于75%,孔隙度大于2.0软土的固化处理,提出了一种在传统水泥-水玻璃基础上添加氯化铝溶液与石膏的固化方法,并结合无侧限抗压强度试验研究了石膏掺量、氯化铝溶液浓度、龄期及水泥掺入比对固化效果的影响规律.试验结果表明:石膏的添加能显著提高固化土强度,且存在一定最佳掺量.在未添加石膏时,固化土强度随氯化铝溶液浓度增大而提高.在掺有石膏时,添加低浓度氯化铝溶液的固化土早期强度较高,但后期强度增长较小;添加高浓度氯化铝溶液的固化土早期强度较小,但后期增长较大,同时氯化铝溶液也存在一定最佳浓度.  相似文献   

13.
本文以矿渣、粉煤灰为原料,以氢氧化钠和水玻璃为激发剂,以双氧水为发泡剂制备了矿渣-粉煤灰基地聚物。研究了发泡剂掺量对发泡地聚物干密度、力学性能和孔隙率的影响,并探讨孔隙率与抗压强度之间的关系。结果表明:随着发泡剂掺量的增加,矿渣-粉煤灰基地聚物的干密度和抗压强度逐渐减少,孔隙率逐渐增大但增长速率逐渐减小。通过拟合发现抗压强度和孔隙率的关系更接近多项式拟合,拟合公式为y=-0.00162x2+0.19342x-1.7049。  相似文献   

14.
为探究粉煤灰固化施工在地基加固处理中的高效应用方法,分别将普通石灰、石膏、水玻璃溶液作为固化剂,制备不同灰水比的测试浆液。以某路面工程项目中的一小段废弃路段为试验路段,利用测试浆液实施地基加固处理施工,使用大型切割机将施工结果切割,作为试验试块,测试试块性能。结果表明:使用石膏作固化剂时固化粉煤灰浆液的初凝、终凝时间最短;以石膏为固化剂的固化粉煤灰浆液的地基加固方格试块的压实系数最大、无侧限抗压强度最高、低温强度最高,三者数值达到最高时的灰水体积比分别为15:10、15:10、13:10。以石膏为固化剂时,固化粉煤灰浆液的地基加固方格试块的性能表现最佳。  相似文献   

15.
为提高水泥粉煤灰混合料的设计质量,提出了基于规划求解的水泥粉煤灰混合料配合比设计方法。利用规划求解的方式,通过试验确定粉煤灰和水泥掺量对混合料无侧限抗压强度、干密度、含水量的影响,最终确定水泥与粉煤灰的配合比。试验结果表明:当粉煤灰的掺量为11%,水泥的掺量为5.5%时,水泥粉煤灰混合料的无侧限抗压强度达到了最高值,并且混合料的干密度和含水量也满足标准要求,水泥粉煤灰混合料设计配合比为5.5∶11,施工配合比为6∶11.5时混合料的性能表现最佳。  相似文献   

16.
吴涵  郭宇  兰安栋  杨秀娟 《四川水泥》2022,(4):54-56+59
文中以受铅污染的杨凌黄土为研究对象,以木质素磺酸钙为改良剂,通过无侧限抗压强度试验、崩解试验和渗透试验,以及对土体浸提液的pH和电导率进行测试,揭示木质素磺酸钙对Pb2+重金属污染土稳定固化的效果。结果表明:随着木质素磺酸钙掺量的增加,固化土的无侧限抗压强度和水稳性均先增大后减小,渗透系数先减小后增大,pH值和电导率值均不断增大;木质素磺酸钙对Pb2+污染土改良的最佳比例范围是0.5%~1.0%,在此范围内,木质素磺酸钙对于提高污染土的无侧限抗压强度、水稳性以及减小土的渗透性均有明显效果。  相似文献   

17.
地聚物属于新型绿色材料,在软土加固领域应用广泛。基于此,本文制备了水胶比为0.3、激发剂模数为1.0的不同矿渣掺量和碱掺量的地聚物试样,通过抗压强度测试确定了最佳矿渣掺量和碱掺量;进而分别在软土中掺加4%、8%、12%、16%以及20%的地聚物进行加固,并对加固效果进行抗压强度、内聚力、内摩擦角分析,找出最佳的地聚物配比。研究结果表明,粉煤灰矿渣地聚物的抗压强度随着碱掺量的增大而先增大后减小,随着矿渣掺量的增大而增大,最佳矿渣掺量和碱掺量分别为40%和10%;加固软土的抗压强度、内聚力和内摩擦角均随地聚物掺量的增大而增大,随软土初始含水率的增大而减小;当粉煤灰矿渣地聚物掺量为12%时,加固软土的水稳定系数可达84%以上。  相似文献   

18.
为了综合利用脱硫石膏和赤泥这两种固废物,本文以二者为原料制备了复合水泥土,对其应力-应变关系和无侧限抗压强度随龄期、pH值及试验材料配比的变化规律进行研究.结果表明,复合水泥土应力-应变曲线呈软化型,且固废物的添加会使材料偏脆性发展;当固废物中碱性材料赤泥比例较大时,复合土强度随龄期增加而增大;而脱硫石膏比例较大时,复合土后期强度会有所减小.原因在于碱性环境有利于钙矾石的产生,同时碱性增大会降低土的塑限而使溶解的胶质析出,对试块内部产生胶结作用,进而提高抗压强度;此外,随着脱硫石膏和赤泥比例的变化,水泥土无侧限抗压强度值从1 MPa提高到8 MPa左右,说明两种固化物的添加有利于水泥土强度的提升.  相似文献   

19.
镍渣利用率较低,露天堆放对土壤、水体和大气造成严重污染。盐渍淤泥土含盐量和含水率较高,很难固化处治。通过对固化材料力学性能进行评价,研究了镍渣目数、活化材料掺量和固化材料掺量等对镍渣基胶凝材料固化盐渍土效果的影响,并通过微观结构分析了固化作用机理。结果表明:固化材料配方为镍渣∶矿渣∶活化剂=5∶4∶1时,其中镍渣达到800目,固化体力学性能最佳;综合考虑经济性因素,选用20%掺量的固化材料固化滨海盐渍土较为适宜,固化土28 d无侧限抗压强度达3.8 MPa。  相似文献   

20.
为实现滩涂淤泥质土和工业废料资源化利用,定量优化地聚物固化淤泥质土的关键因素,基于Box-Behnken响应面法对碱激发矿渣-粉煤灰基地聚物固化淤泥质土的配合比进行优化,选取矿渣掺量、碱激发剂模数和碱激发剂掺量为主要考察因素,并结合宏观性能和微观形貌进行固化机理分析。结果表明:固化土最优配合比为矿渣掺量86.5%(质量分数),碱激发剂模数0.84,碱激发剂掺量7.3%(质量分数),此时固化土7和28 d无侧限抗压强度分别为5 823和7 027 kPa,预测值与实际值误差较小,所建立的模型与实际数据拟合准确可靠;固化土的水化产物主要为无定形凝胶水化硅铝酸钙(C-(A)-S-H)和硅铝酸盐聚合物(N-A-S-H),可增强土体的密实程度和骨架结构,以此提高固化土的强度。本研究为碱激发地聚物固化淤泥质土提供了理论依据和实验基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号