首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neurodevelopment is uniquely sensitive to toxic insults and there are concerns that environmental chemicals are contributing to widespread subclinical developmental neurotoxicity (DNT). Increased DNT evaluation is needed due to the lack of such information for most chemicals in common use, but in vivo studies recommended in regulatory guidelines are not practical for the large-scale screening of potential DNT chemicals. It is widely acknowledged that developmental neurotoxicity is a consequence of disruptions to basic processes in neurodevelopment and that testing strategies using human cell-based in vitro systems that mimic these processes could aid in prioritizing chemicals with DNT potential. Myelination is a fundamental process in neurodevelopment that should be included in a DNT testing strategy, but there are very few in vitro models of myelination. Thus, there is a need to establish an in vitro myelination assay for DNT. Here, we summarize the routes of myelin toxicity and the known models to study this particular endpoint.  相似文献   

2.
The EBI2 receptor regulates the immune system and is expressed in various immune cells including B and T lymphocytes. It is also expressed in astrocytes in the central nervous system (CNS) where it regulates pro-inflammatory cytokine release, cell migration and protects from chemically induced demyelination. Its signaling and expression are implicated in various diseases including multiple sclerosis, where its expression is increased in infiltrating immune cells in the white matter lesions. Here, for the first time, the EBI2 protein in the CNS cells in the human brain was examined. The function of the receptor in MO3.13 oligodendrocytes, as well as its role in remyelination in organotypic cerebellar slices, were investigated. Human brain sections were co-stained for EBI2 receptor and various markers of CNS-specific cells and the human oligodendrocyte cell line MO3.13 was used to investigate changes in EBI2 expression and cellular migration. Organotypic cerebellar slices prepared from wild-type and cholesterol 25-hydroxylase knock-out mice were used to study remyelination following lysophosphatidylcholine (LPC)-induced demyelination. The data showed that EBI2 receptor is present in OPCs but not in myelinating oligodendrocytes in the human brain and that EBI2 expression is temporarily upregulated in maturing MO3.13 oligodendrocytes. Moreover, we show that migration of MO3.13 cells is directly regulated by EBI2 and that its signaling is necessary for remyelination in cerebellar slices post-LPC-induced demyelination. The work reported here provides new information on the expression and role of EBI2 in oligodendrocytes and myelination and provides new tools for modulation of oligodendrocyte biology and therapeutic approaches for demyelinating diseases.  相似文献   

3.
Organoids are tiny, self-organized, three-dimensional tissue cultures that are derived from the differentiation of stem cells. The growing interest in the use of organoids arises from their ability to mimic the biology and physiology of specific tissue structures in vitro. Organoids indeed represent promising systems for the in vitro modeling of tissue morphogenesis and organogenesis, regenerative medicine and tissue engineering, drug therapy testing, toxicology screening, and disease modeling. Although 2D cell cultures have been used for more than 50 years, even for their simplicity and low-cost maintenance, recent years have witnessed a steep rise in the availability of organoid model systems. Exploiting the ability of cells to re-aggregate and reconstruct the original architecture of an organ makes it possible to overcome many limitations of 2D cell culture systems. In vitro replication of the cellular micro-environment of a specific tissue leads to reproducing the molecular, biochemical, and biomechanical mechanisms that directly influence cell behavior and fate within that specific tissue. Lineage-specific self-organizing organoids have now been generated for many organs. Currently, growing cardiac organoid (cardioids) from pluripotent stem cells and cardiac stem/progenitor cells remains an open challenge due to the complexity of the spreading, differentiation, and migration of cardiac muscle and vascular layers. Here, we summarize the evolution of biological model systems from the generation of 2D spheroids to 3D organoids by focusing on the generation of cardioids based on the currently available laboratory technologies and outline their high potential for cardiovascular research.  相似文献   

4.
Neurodegenerative diseases have acquired the status of one of the leading causes of death in developed countries, which requires creating new model systems capable of accurately reproducing the mechanisms underlying these pathologies. Here we analyzed modern model systems and their contribution to the solution of unexplored manifestations of neuropathological processes. Each model has unique properties that make it the optimal tool for modeling certain aspects of neurodegenerative disorders. We concluded that to optimize research, it is necessary to combine models into complexes that include organisms and artificial systems of different organizational levels. Such complexes can be organized in two ways. The first method can be described as “step by step”, where each model for studying a certain characteristic is a separate step that allows using the information obtained in the modeling process for the gradual study of increasingly complex processes in subsequent models. The second way is a ‘network’ approach. Studies are carried out with several types of models simultaneously, and experiments with each specific type are adjusted in conformity with the data obtained from other models. In our opinion, the ‘network‘ approach to combining individual model systems seems more promising for fundamental biology as well as diagnostics and therapy.  相似文献   

5.
Approximately 15% of multiple sclerosis (MS) patients develop a progressive form of disease from onset; this condition (primary progressive-PP) MS is difficult to diagnose and treat, and is associated with a poor prognosis. Extracellular vesicles (EVs) of brain origin isolated from blood and their protein cargoes could function as a biomarker of pathological conditions. We verified whether MBP and MOG content in oligodendrocytes-derived EVs (ODEVs) could be biomarkers of MS and could help in the differential diagnosis of clinical MS phenotypes. A total of 136 individuals (7 clinically isolated syndrome (CIS), 18 PPMS, 49 relapsing remitting (RRMS)) and 70 matched healthy controls (HC) were enrolled. ODEVs were enriched from serum by immune-capture with anti-MOG antibody; MBP and MOG protein cargoes were measured by ELISA. MBP concentration in ODEVs was significantly increased in CIS (p < 0.001), RRMS (p < 0.001) and PPMS (p < 0.001) compared to HC and was correlated with disease severity measured by EDSS and MSSS. Notably, MBP concentration in ODEVs was also significantly augmented in PPMS compared to RRMS (p = 0.004) and CIS (p = 0.03). Logistic regression and ROC analyses confirmed these results. A minimally invasive blood test measuring the concentration of MBP in ODEVs is a promising tool that could facilitate MS diagnosis.  相似文献   

6.
This review provides an overview of the assessment of the endocrine disrupting (ED) properties of carbon disulfide (CS2), following the methodology used at the European level to identify endocrine disruptors. Relevant in vitro, in vivo studies and human data are analyzed. The assessment presented here focuses on one endocrine activity, i.e., thyroid disruption, and two main adverse effects, neurotoxicity and cardiotoxicity. The data available on the different ED or non-ED modes of action (MoA), known to trigger these adverse effects, are described and the strength of evidence of the different MoA is weighted. We conclude that the adverse effects could be due to systemic toxicity rather than endocrine-mediated toxicity. This assessment illustrates the scientific and regulatory challenges in differentiating a specific endocrine disruption from an indirect endocrine effect resulting from a non-ED mediated systemic toxicity. This issue of evaluating the ED properties of highly toxic and reactive substances has been insufficiently developed by European guidance so far and needs to be further addressed. Finally, this example also raises questions about the capacity of the technics available in toxicology to address such a complex issue with certainty.  相似文献   

7.
Acrylamide is a commonly used industrial chemical that is known to be neurotoxic to mammals. However, its developmental toxicity is rarely assessed in mammalian models because of the cost and complexity involved. We used zebrafish to assess the neurotoxicity, developmental and behavioral toxicity of acrylamide. At 6 h post fertilization, zebrafish embryos were exposed to four concentrations of acrylamide (10, 30, 100, or 300 mg/L) in a medium for 114 h. Acrylamide caused developmental toxicity characterized by yolk retention, scoliosis, swim bladder deficiency, and curvature of the body. Acrylamide also impaired locomotor activity, which was measured as swimming speed and distance traveled. In addition, treatment with 100 mg/L acrylamide shortened the width of the brain and spinal cord, indicating neuronal toxicity. In summary, acrylamide induces developmental toxicity and neurotoxicity in zebrafish. This can be used to study acrylamide neurotoxicity in a rapid and cost-efficient manner.  相似文献   

8.
Endocrine-disrupting chemicals (EDCs) are hormonally active compounds in the environment that interfere with the body’s endocrine system and consequently produce adverse health effects. Despite persistent public health concerns, EDCs remain important components of common consumer products, thus representing ubiquitous contaminants to humans. While scientific evidence confirmed their contribution to the severity of Influenza A virus (H1N1) in the animal model, their roles in susceptibility and clinical outcome of the coronavirus disease (COVID-19) cannot be underestimated. Since its emergence in late 2019, clinical reports on COVID-19 have confirmed that severe disease and death occur in persons aged ≥65 years and those with underlying comorbidities. Major comorbidities of COVID-19 include diabetes, obesity, cardiovascular disease, hypertension, cancer, and kidney and liver diseases. Meanwhile, long-term exposure to EDCs contributes significantly to the onset and progression of these comorbid diseases. Besides, EDCs play vital roles in the disruption of the body’s immune system. Here, we review the recent literature on the roles of EDCs in comorbidities contributing to COVID-19 mortality, impacts of EDCs on the immune system, and recent articles linking EDCs to COVID-19 risks. We also recommend methodologies that could be adopted to comprehensively study the role of EDCs in COVID-19 risk.  相似文献   

9.
Myelin basic protein (MBP) is intrinsically disordered in solution and is considered as a conformationally flexible biomacromolecule. Here, we present a study on perturbation of MBP structure and dynamics by the denaturant guanidinium chloride (GndCl) using small-angle scattering and neutron spin–echo spectroscopy (NSE). A concentration of 0.2 M GndCl causes charge screening in MBP resulting in a compact, but still disordered protein conformation, while GndCl concentrations above 1 M lead to structural expansion and swelling of MBP. NSE data of MBP were analyzed using the Zimm model with internal friction (ZIF) and normal mode (NM) analysis. A significant contribution of internal friction was found in compact states of MBP that approaches a non-vanishing internal friction relaxation time of approximately 40 ns at high GndCl concentrations. NM analysis demonstrates that the relaxation rates of internal modes of MBP remain unaffected by GndCl, while structural expansion due to GndCl results in increased amplitudes of internal motions. Within the model of the Brownian oscillator our observations can be rationalized by a loss of friction within the protein due to structural expansion. Our study highlights the intimate coupling of structural and dynamical plasticity of MBP, and its fundamental difference to the behavior of ideal polymers in solution.  相似文献   

10.
Persistent organic pollutants (POPs) are organic chemical substances that are widely distributed in environments around the globe. POPs accumulate in living organisms and are found at high concentrations in the food chain. Humans are thus continuously exposed to these chemical substances, in which they exert hepatic, reproductive, developmental, behavioral, neurologic, endocrine, cardiovascular, and immunologic adverse health effects. However, considerable information is unknown regarding the mechanism by which POPs exert their adverse effects in humans, as well as the molecular and cellular responses involved. Data are notably lacking concerning the consequences of acute and chronic POP exposure on changes in gene expression, protein profile, and metabolic pathways. We conducted a systematic review to provide a synthesis of knowledge of POPs arising from proteomics-based research. The data source used for this review was PubMed. This study was carried out following the PRISMA guidelines. Of the 742 items originally identified, 89 were considered in the review. This review presents a comprehensive overview of the most recent research and available solutions to explore proteomics datasets to identify new features relevant to human health. Future perspectives in proteomics studies are discussed.  相似文献   

11.
Gastric cancer represents a significant disease burden worldwide. The factors that initiate cancer are not well understood. Chronic inflammation such as that triggered by H. pylori infection is the most significant cause of gastric cancer. In recent years, organoid cultures developed from human and animal adult stem cells have facilitated great advances in our understanding of gastric homeostasis. Organoid models are now being exploited to investigate the role of host genetics and bacterial factors on proliferation and DNA damage in gastric stem cells. The impact of a chronic inflammatory state on gastric stem cells and the stroma has been less well addressed. This review discusses what we have learned from the use of organoid models to investigate cancer initiation, and highlights questions on the contribution of the microbiota, chronic inflammatory milieu, and stromal cells that can now be addressed by more complex coculture models.  相似文献   

12.
Neurodegenerative protein conformational diseases are characterized by the misfolding and aggregation of metastable proteins encoded within the host genome. The host is also home to thousands of proteins encoded within exogenous genomes harbored by bacteria, fungi, and viruses. Yet, their contributions to host protein-folding homeostasis, or proteostasis, remain elusive. Recent studies, including our previous work, suggest that bacterial products contribute to the toxic aggregation of endogenous host proteins. We refer to these products as bacteria-derived protein aggregates (BDPAs). Furthermore, antibiotics were recently associated with an increased risk for neurodegenerative diseases, including Parkinson’s disease and amyotrophic lateral sclerosis—possibly by virtue of altering the composition of the human gut microbiota. Other studies have shown a negative correlation between disease progression and antibiotic administration, supporting their protective effect against neurodegenerative diseases. These contradicting studies emphasize the complexity of the human gut microbiota, the gut–brain axis, and the effect of antibiotics. Here, we further our understanding of bacteria’s effect on host protein folding using the model Caenorhabditis elegans. We employed genetic and chemical methods to demonstrate that the proteotoxic effect of bacteria on host protein folding correlates with the presence of BDPAs. Furthermore, the abundance and proteotoxicity of BDPAs are influenced by gentamicin, an aminoglycoside antibiotic that induces protein misfolding, and by butyrate, a short-chain fatty acid that we previously found to affect host protein aggregation and the associated toxicity. Collectively, these results increase our understanding of host–bacteria interactions in the context of protein conformational diseases.  相似文献   

13.
Many extensible tissues such as skin, lungs, and blood vessels require elasticity to function properly. The recoil of elastic energy stored during a stretching phase is provided by elastic fibers, which are mostly composed of elastin and fibrillin-rich microfibrils. In arteries, the lack of elastic fibers leads to a weakening of the vessel wall with an increased risk to develop cardiovascular defects such as stenosis, aneurysms, and dissections. The development of new therapeutic molecules involves preliminary tests in animal models that recapitulate the disease and whose response to drugs should be as close as possible to that of humans. Due to its superior in vivo imaging possibilities and the broad tool kit for forward and reverse genetics, the zebrafish has become an important model organism to study human pathologies. Moreover, it is particularly adapted to large scale studies, making it an attractive model in particular for the first steps of investigations. In this review, we discuss the relevance of the zebrafish model for the study of elastic fiber-related vascular pathologies. We evidence zebrafish as a compelling alternative to conventional mouse models.  相似文献   

14.
Methylmercury (MeHg) is a ubiquitous pollutant shown to cause developmental neurotoxicity, even at low levels. However, there is still a large gap in our understanding of the mechanisms linking early-life exposure to life-long behavioural impairments. Our aim was to characterise the short- and long-term effects of developmental exposure to low doses of MeHg on anxiety-related behaviours in zebrafish, and to test the involvement of neurological pathways related to stress-response. Zebrafish embryos were exposed to sub-acute doses of MeHg (0, 5, 10, 15, 30 nM) throughout embryo-development, and tested for anxiety-related behaviours and locomotor activity at larval (light/dark locomotor activity) and adult (novel tank and tap assays) life-stages. Exposure to all doses of MeHg caused increased anxiety-related responses; heightened response to the transition from light to dark in larvae, and a stronger dive response in adults. In addition, impairment in locomotor activity was observed in the higher doses in both larvae and adults. Finally, the expressions of several neural stress-response genes from the HPI-axis and dopaminergic system were found to be disrupted in both life-stages. Our results provide important insights into dose-dependent differences in exposure outcomes, the development of delayed effects over the life-time of exposed individuals and the potential mechanisms underlying these effects.  相似文献   

15.
The establishment of more efficient approaches for developmental neurotoxicity testing (DNT) has been an emerging issue for children's environmental health. Here we describe a systematic approach for DNT using the neuronal differentiation of mouse embryonic stem cells (mESCs) as a model of fetal programming. During embryoid body (EB) formation, mESCs were exposed to 12 chemicals for 24 h and then global gene expression profiling was performed using whole genome microarray analysis. Gene expression signatures for seven kinds of gene sets related to neuronal development and neuronal diseases were selected for further analysis. At the later stages of neuronal cell differentiation from EBs, neuronal phenotypic parameters were determined using a high-content image analyzer. Bayesian network analysis was then performed based on global gene expression and neuronal phenotypic data to generate comprehensive networks with a linkage between early events and later effects. Furthermore, the probability distribution values for the strength of the linkage between parameters in each network was calculated and then used in principal component analysis. The characterization of chemicals according to their neurotoxic potential reveals that the multi-parametric analysis based on phenotype and gene expression profiling during neuronal differentiation of mESCs can provide a useful tool to monitor fetal programming and to predict developmentally neurotoxic compounds.  相似文献   

16.
The diurnal rodent Octodon degus (O. degus) is considered an attractive natural model for Alzheimer’s disease and other human age-related features. However, it has not been explored so far if the O. degus could be used as a model to study Parkinson’s disease. To test this idea, 10 adult male O. degus were divided into control group and MPTP-intoxicated animals. Motor condition and cognition were examined. Dopaminergic degeneration was studied in the ventral mesencephalon and in the striatum. Neuroinflammation was also evaluated in the ventral mesencephalon, in the striatum and in the dorsal hippocampus. MPTP animals showed significant alterations in motor activity and in visuospatial memory. Postmortem analysis revealed a significant decrease in the number of dopaminergic neurons in the ventral mesencephalon of MPTP animals, although no differences were found in their striatal terminals. We observed a significant increase in neuroinflammatory responses in the mesencephalon, in the striatum and in the hippocampus of MPTP-intoxicated animals. Additionally, changes in the subcellular expression of the calcium-binding protein S100β were found in the astrocytes in the nigrostriatal pathway. These findings prove for the first time that O. degus are sensitive to MPTP intoxication and, therefore, is a suitable model for experimental Parkinsonism in the context of aging.  相似文献   

17.
Several degenerative amyloid diseases, with no fully effective treatment, affect millions of people worldwide. These pathologies—amyloidoses—are known to be associated with the formation of ordered protein aggregates and highly stable and insoluble amyloid fibrils, which are deposited in multiple tissues and organs. The disruption of preformed amyloid aggregates and fibrils is one possible therapeutic strategy against amyloidosis; however, only a few compounds have been identified as possible fibril disruptors in vivo to date. To properly identify chemical compounds as potential fibril disruptors, a reliable, fast, and economic screening protocol must be developed. For this purpose, three amyloid fibril formation protocols using transthyretin (TTR), a plasma protein involved in several amyloidoses, were studied using thioflavin-T fluorescence assays, circular dichroism (CD), turbidity, dynamic light scattering (DLS), and transmission electron microscopy (TEM), in order to characterize and select the most appropriate fibril formation protocol. Saturation transfer difference nuclear magnetic resonance spectroscopy (STD NMR) was successfully used to study the interaction of doxycycline, a known amyloid fibril disruptor, with preformed wild-type TTR (TTRwt) aggregates and fibrils. DLS and TEM were also used to characterize the effect of doxycycline on TTRwt amyloid species disaggregation. A comparison of the TTR amyloid morphology formed in different experimental conditions is also presented.  相似文献   

18.
Background: Mitochondrial DNA (mtDNA) diseases are a group of maternally inherited genetic disorders caused by a lack of energy production. Currently, mtDNA diseases have a poor prognosis and no known cure. The chance to have unaffected offspring with a genetic link is important for the affected families, and mitochondrial replacement techniques (MRTs) allow them to do so. MRTs consist of transferring the nuclear DNA from an oocyte with pathogenic mtDNA to an enucleated donor oocyte without pathogenic mtDNA. This paper aims to determine the efficacy, associated risks, and main ethical and legal issues related to MRTs. Methods: A bibliographic review was performed on the MEDLINE and Web of Science databases, along with searches for related clinical trials and news. Results: A total of 48 publications were included for review. Five MRT procedures were identified and their efficacy was compared. Three main risks associated with MRTs were discussed, and the ethical views and legal position of MRTs were reviewed. Conclusions: MRTs are an effective approach to minimizing the risk of transmitting mtDNA diseases, but they do not remove it entirely. Global legal regulation of MRTs is required.  相似文献   

19.
Astrocytes are very versatile cells, endowed with multitasking capacities to ensure brain homeostasis maintenance from brain development to adult life. It has become increasingly evident that astrocytes play a central role in many central nervous system pathologies, not only as regulators of defensive responses against brain insults but also as primary culprits of the disease onset and progression. This is particularly evident in some rare leukodystrophies (LDs) where white matter/myelin deterioration is due to primary astrocyte dysfunctions. Understanding the molecular defects causing these LDs may help clarify astrocyte contribution to myelin formation/maintenance and favor the identification of possible therapeutic targets for LDs and other CNS demyelinating diseases. To date, the pathogenic mechanisms of these LDs are poorly known due to the rarity of the pathological tissue and the failure of the animal models to fully recapitulate the human diseases. Thus, the development of human induced pluripotent stem cells (hiPSC) from patient fibroblasts and their differentiation into astrocytes is a promising approach to overcome these issues. In this review, we discuss the primary role of astrocytes in LD pathogenesis, the experimental models currently available and the advantages, future evolutions, perspectives, and limitations of hiPSC to study pathologies implying astrocyte dysfunctions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号