共查询到20条相似文献,搜索用时 0 毫秒
1.
针对云环境下动态工作负载的不确定性,提出了基于自适应过载阈值选择的虚拟机动态整合方法。为了权衡数据中心能源有效性与服务质量间的关系,将自适应过载阈值的选择问题建模为马尔可夫决策过程,计算过载阈值的最优选择策略,并根据系统能效和服务质量调整阈值。通过过载阈值检测过载物理主机,然后根据最小迁移时间原则以及最小能耗增加放置原则确定虚拟机的迁移策略,最后切换轻负载物理主机至休眠状态完成虚拟机整合。仿真实验结果表明,所提出的方法在减少虚拟机迁移次数方面效果显著,在节约数据中心能源开销与保证服务质量方面表现良好,在能源的有效性与云服务质量二者之间取得了比较理想的平衡。 相似文献
2.
为降低云计算系统产生的能耗,实现系统多类型资源的合理利用,提出虚拟机多资源能耗优化放置模型,并给出虚拟机多目标资源随机多组优化算法(RMRO)。RMRO算法随机生成多组虚拟机放置序列,并对每组序列进行优化,从中选出最优的序列作为最终的虚拟机序列。基于RMRO,进一步提出了3种虚拟机放置序列的再优化策略,通过实验对比,选择MMBA策略作为最佳策略。仿真结果表明,RMRO相比传统的MBFD和MBFH算法,能明显降低数据中心的能耗,同时使系统多种资源利用更合理。 相似文献
3.
Dynamic consolidation of virtual machines (VMs) is an efficient approach for improving the utilization of physical resources and reducing energy consumption in cloud data centers. Despite the large volume of research published on this topic, there are very few open‐source software systems implementing dynamic VM consolidation. In this paper, we propose an architecture and open‐source implementation of OpenStack Neat, a framework for dynamic VM consolidation in OpenStack clouds. OpenStack Neat can be configured to use custom VM consolidation algorithms and transparently integrates with existing OpenStack deployments without the necessity of modifying their configuration. In addition, to foster and encourage further research efforts in the area of dynamic VM consolidation, we propose a benchmark suite for evaluating and comparing dynamic VM consolidation algorithms. The proposed benchmark suite comprises OpenStack Neat as the base software framework, a set of real‐world workload traces, performance metrics and evaluation methodology. As an application of the proposed benchmark suite, we conduct an experimental evaluation of OpenStack Neat and several dynamic VM consolidation algorithms on a five‐node testbed, which shows significant benefits of dynamic VM consolidation resulting in up to 33% energy savings. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
4.
Dynamic virtual machine (VM) consolidation is one of the emerging technologies that has been considered for low-cost computing in cloud data centers. Quality-of-service (QoS) assurance is one of the challenging issues in the VM consolidation problem since it is directly affected by the increase of resource utilization due to the consolidations. In this paper, we take advantage of Markov chain models to propose a novel approach for VM consolidation that can be used to explicitly set a desired level of QoS constraint in a data center to ensure the QoS goals while improving system utilization. For this purpose, an energy-efficient and QoS-aware best fit decreasing algorithm for VM placement is proposed, which considers QoS objective when determining the location of a migrating VM. This algorithm employs an online transition matrix estimator method to deal with the nonstationary nature of real workload data. We also propose new policies for detecting overloaded and underloaded hosts. The performance of our proposed algorithms is evaluated through simulations. The results show that the proposed VM consolidation algorithms in this paper outperforms the benchmark algorithms in terms of energy consumption, service-level agreement violations, and other cost factors. 相似文献
5.
优化虚拟机部署是数据中心降低能耗的一个重要方法。目前大多数虚拟机部署算法都明显地降低了能耗,但过度虚拟机整合和迁移引起了系统性能较大的退化。针对该问题,首先构建虚拟机优化部署模型。然后提出一种二阶段迭代启发式算法来求解该模型,第一阶段是基于首次适应下降装箱算法,提出一种虚拟机优化部署算法,目标是最小化主机数;第二阶段是提出了一种虚拟机在线迁移选择算法,目标是最小化待迁移虚拟机数。实验结果表明,该算法能够有效地降低能耗,具有较低的服务等级协定(SLA)违背率和较好的时间性能。 相似文献
6.
潘继财 《计算机测量与控制》2022,30(2):257-262
针对传统云计算任务调度模型出现的计算量大、能耗高、效率低、调配精度差等问题,基于动态能量感知设计了一种新的云计算任务调度模型;以动态能量感知为基础,选取资源分配服务器的中央处理器的使用率、存储器的占用率、控制器的负载率等3个参数,构建三维云计算任务节点投影空间,将上述参数向量投影到空间中;引入动态能量感知建立云计算任务调度模型,采用虚拟技术将多个服务器合并成一台服务器,对调度任务进行需求分析和分类,采用能量感知算法将待调度任务分配给满足调度需求的虚拟资源,将任务调度到服务器资源上,实现任务调度;实验结果表明,基于动态能量感知的云计算任务调度模型在从小任务集和大任务集两个角度都能给有效缩短调度时间,降低调度能耗。 相似文献
7.
针对异构云环境中的虚拟机放置(VMP)问题,提出一种基于虚拟机资源需求分布特征的放置算法(RDDFPA)。首先,建立基于CPU资源和内存资源比例系数的虚拟机需求和物理机配置描述方法,并根据该比例系数对所有虚拟机进行排序;其次,通过分析虚拟机需求与物理机配置各自在CPU资源和内存资源比例方面的关系,确定比例分界点,完成虚拟机集合的划分,每个虚拟机子集合的规模反映出对相匹配的不同配置物理机的需求比例;最后,利用启发式算法如首次适应(First Fit)算法完成虚拟机子集合在相匹配配置的物理机子集合上的放置。理论分析和仿真实验结果表明,与采用任意单一配置的物理机总数量相比,所提算法所需物理机的总台数减少了2%~17%。RDDFPA能够根据虚拟机资源需求分布的不同,确定各类配置物理机的数量,高效完成虚拟机的放置,在提高资源利用率的同时,降低了系统能耗。 相似文献
8.
Efficient energy and temperature management techniques are essential elements for operators of cloud data centers. Dynamic virtual machine (VM) consolidation using live migration techniques presents a great opportunity for cloud service providers to adaptively reduce energy consumption and optimize their resource utilization. In recent studies, power consumption readings of individual physical hosts were chosen as the main monitoring parameters in their allocation policies, whereas very few have considered host temperature, which has shown to have a negative impact on server reliability, as a migration criterion. In this work, a thermal-aware VM consolidation mechanism is proposed for resource allocation optimization and server reliability assurance. We consider the variability in host temperature as a migration criterion to avoid outage incidents via having better VM consolidations. Extensive simulation results obtained from CloudSim show the promising performance of the proposed mechanism in energy saving while reducing the number of server outage incidents due to fluctuations in host temperature. 相似文献
9.
虚拟机动态配置是解决数据中心能耗低效的有效方法。针对动态配置过程中的虚拟机部署及优化问题展开研究,提出一种新的面向系统能耗的虚拟机部署算法以及基于主动迁移的优化策略。为了降低系统能耗,新算法采用基于服务器利用率的最佳适配降序算法求解虚拟机部署方案;同时为了适应应用负载的动态变化,新算法启动主动迁移策略对部署方案进行优化,即通过启发式算法在当前部署的基础上搜索使系统能耗更低的优化方案,并根据新部署对虚拟机执行主动迁移。考虑到迁移会导致应用服务质量降级和额外能耗,新算法通过在优化策略中设置基于服务器利用率的启动门限,对虚拟机主动迁移频率进行控制。仿真实验表明,所提算法在系统能耗、虚拟机迁移频率、服务器状态切换频率以及服务质量等多项性能指标上均有显著提高 相似文献
10.
Cloud systems have become an essential part of our daily lives owing to various Internet-based services. Consequently, their energy utilization has also become a necessary concern in cloud computing systems increasingly. Live migration, including several virtual machines (VMs) packed on in minimal physical machines (PMs) as virtual machines consolidation (VMC) technique, is an approach to optimize power consumption. In this article, we have proposed an energy-aware method for the VMC problem, which is called energy-aware virtual machines consolidation (EVMC), to optimize the energy consumption regarding the quality of service guarantee, which comprises: (1) the support vector machine classification method based on the utilization rate of all resource of PMs that is used for PM detection in terms of the amount' load; (2) the modified minimization of migration approach which is used for VM selection; (3) the modified particle swarm optimization which is implemented for VM placement. Also, the evaluation of the functional requirements of the method is presented by the formal method and the non-functional requirements by simulation. Finally, in contrast to the standard greedy algorithms such as modified best fit decreasing, the EVMC decreases the active PMs and migration of VMs, respectively, 30%, 50% on average. Also, it is more efficient for the energy 30% on average, resources and the balance degree 15% on average in the cloud. 相似文献
11.
提出了一种云数据中心基于数据依赖的虚拟机选择算法DDBS(data dependency based VM selection).参考Cloudsim项目中方法,将虚拟机迁移过程划分为虚拟机选择操作(VM selection)和虚拟机放置(VM placement)操作.DDBS在虚拟机选择过程中考虑虚拟机之间的数据依赖关系,把选择与迁移代价值比较小的虚拟机形成侯选虚拟机列表,配合后续的虚拟机放置策略最终完成虚拟机的迁移过程.以Cloudsim云计算模拟器中的虚拟机选择及放置策略作为性能比较对象.实验结果表明:DDBS与Cloudsim中已有能量感知的算法比较起来,在虚拟机迁移次数和能量消耗方面都比较少,可用性比较高. 相似文献
12.
Adnan Ashraf Ivan Porres 《International Journal of Parallel, Emergent and Distributed Systems》2018,33(1):103-120
In this paper, we present a novel multi-objective ant colony system algorithm for virtual machine (VM) consolidation in cloud data centres. The proposed algorithm builds VM migration plans, which are then used to minimise over-provisioning of physical machines (PMs) by consolidating VMs on under-utilised PMs. It optimises two objectives that are ordered by their importance. The first and foremost objective in the proposed algorithm is to maximise the number of released PMs. Moreover, since VM migration is a resource-intensive operation, it also tries to minimise the number of VM migrations. The proposed algorithm is empirically evaluated in a series of experiments. The experimental results show that the proposed algorithm provides an efficient solution for VM consolidation in cloud data centres. Moreover, it outperforms two existing ant colony optimization-based VM consolidation algorithms in terms of number of released PMs and number of VM migrations. 相似文献
13.
Cloud simulators in the implementation and evaluation of virtual machine placement algorithms 下载免费PDF全文
Zoltán Ádám Mann 《Software》2018,48(7):1368-1389
In recent years, many algorithms have been proposed for the optimized allocation of virtual machines in cloud data centers. Such algorithms are usually implemented and evaluated in a cloud simulator. This paper investigates the impact of the choice of cloud simulator on the implementation of the algorithms and on the evaluation results. In particular, we report our experiences with porting an algorithm and its evaluation framework from one simulator (CloudSim) to another (DISSECT‐CF). Our findings include limitations in the design of the simulators and in existing algorithm implementations. Based on this experience, we propose architectural guidelines for the integration of virtual machine allocation algorithms into cloud simulators. 相似文献
14.
随着移动云计算的快速发展和应用普及,如何对移动云中心资源进行有效管理同时又降低能耗、确保资源高可用是目前移动云计算数据中心的热点问题之一.本文从CPU、内存、网络带宽和磁盘四个维度,建立了基于多目标优化的虚拟机调度模型VMSM-EUN(Virtual Machine Scheduling Model based on Energy consumption,Utility and minimum Number of servers),将最小化数据中心能耗、最大化数据中心效用以及最小化服务器数量作为调度目标.设计了基于改进粒子群的自适应参数调整的虚拟机调度算法VMSA-IPSO(Virtual Machine Scheduling Algorithm based on Improved Particle Swarm Optimization)来求解该模型.最后通过仿真实验验证了本文提出的调度算法的可行性与有效性.对比实验结果表明,本文设计的基于改进粒子群的自适应虚拟机调度算法在进行虚拟机调度时,能在降低能耗的同时提高数据中心效用. 相似文献
15.
现有的以降低能耗为目标的虚拟机动态整合算法通常忽略了虚拟机迁移所带来的消极影响,导致虚拟机的动态整合虽然减少了数据中心的能耗,但不合理的虚拟机迁移次数较多,极有可能增加了SLA(Service Level Agreements)的违例率。针对上述问题,提出了一种迁移开销感知的虚拟机动态整合算法MigCAP(Migration Cost Aware Policy),定义了迁移收益参数EMP,MigCAP算法通过EMP值的大小来决定是否需要进行虚拟机的迁移,避免了不合理的虚拟机迁移的发生。实验结果表明,MigCAP算法与现有的其他虚拟机动态整合算法相比,能够在有效减少能耗和降低SLA违例率的基础上,显著减少虚拟机迁移次数。 相似文献
16.
Recently, with the growth of cyber physical systems (CPS), several applications have begun to deploy in the CPS for connecting the cyber space with the physical scale effectively. Besides, the cloud computing (CC) enabled CPS offers huge processing and storage resources for CPS that finds helpful for a range of application areas. At the same time, with the massive development of applications that exist in the CPS environment, the energy utilization of the cloud enabled CPS has gained significant interest. For improving the energy effectiveness of the CC platform, virtualization technologies have been employed for resource management and the applications are executed via virtual machines (VMs). Since effective scheduling of resources acts as an important role in the design of cloud enabled CPS, this paper focuses on the design of chaotic sandpiper optimization based VM scheduling (CSPO-VMS) technique for energy efficient CPS. The CSPO-VMS technique is utilized for searching for the optimum VM migration solution and it helps to choose an effective scheduling strategy. The CSPO algorithm integrates the concepts of traditional SPO algorithm with the chaos theory, which substitutes the main parameter and combines it with the chaos. In order to improve the process of determining the global optimum solutions and convergence rate of the SPO algorithm, the chaotic concept is included in the SPO algorithm. The CSPO-VMS technique also derives a fitness function to choose optimal scheduling strategy in the CPS environment. In order to demonstrate the enhanced performance of the CSPO-VMS technique, a wide range of simulations were carried out and the results are examined under varying aspects. The simulation results ensured the improved performance of the CSPO-VMS technique over the recent methods interms of different measures. 相似文献
17.
18.
针对云环境下服务器内部多种资源间分配不均衡问题,提出了一种多维资源协同聚合的虚拟机调度算法MCCA。该算法在分组遗传算法的基础上,采用模糊逻辑及基于资源利用率多维方差的控制参量,设计适应度函数指导搜索解空间。算法使用基于轮盘赌法的选择方法,并对交叉和变异等进行了优化,以实现快速有效地获取近似最优解。在CloudSim环境下进行了仿真,实验结果表明该算法对均衡多维资源分配和提高资源综合利用率具有一定的优势。 相似文献
19.
虚拟机克隆技术是指在云计算环境下快速复制出多个虚拟机(VM)并将这些VM分发到多台物理主机上,克隆出来的VM共享相同的初始状态然后独立运行提供服务。虚拟机克隆使得云计算提供商能够快速有效地部署系统资源。给出了一种虚拟机快速克隆方法,利用写时拷贝技术来创建虚拟磁盘和内存状态的快照,然后用按需分配内存技术和多点传送技术来请求和传输这些状态信息。在C3云平台上的实验表明,此方法在不中断源虚拟机中运行服务的情况下,实现了云计算中的快速虚拟机克隆。 相似文献
20.
吴国芳 《计算机测量与控制》2014,22(12)
虚拟计算机在云计算中被广泛使用时,会导致用户到服务器的距离比以前更长,引起虚拟计算机的性能退化,这会带来服务质量的恶化和ICT(information communication technology)设备能源消耗的增加;针对该问题,提出了把网络加速器自动应用到云计算网络中的方法;为了使用当前主流的网络加速器,方案采用了基于mSCTP的数据传输,该协议在迁移前后使用不同的传输控制协议(TCP)连接的;文章没有考虑动态迁移本身会使虚拟计算机的性能退化,实验结果表明,虽然需要安装网络加速器作为云资源的一部分并暂时地增加通信链路的数据包传输速度,但是文章提出的使用网络加速器方法,可明显地降低ICT设备的能源消耗,其降低量是原来不使用网络加速器时的1/3。 相似文献